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Structure of E(K )

Mordell, Weil
Let E be an elliptic curve over a number field K . Then

E(K )' Zr + E(K )tor

where
r = the algebraic rank of E
E(K )tors = the finite torsion subgroup of E(K ).

Questions arising

Is E(K ) finite?
How do we compute r?
Could we produce a set of generators for E(K )/E(K )tors?
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Main insight in the field

Wiles, Breuil, Conrad, Diamond, Taylor

For K = Q, L(E/K ,s) has analytic continuation to all of C and
satisfies

L∗(E/K ,2−s) = w(E/K )L∗(E/K ,s).

Birch, Swinnerton-Dyer’s conjecture

The analytic rank of E/K is defined as

ran = ords=1L(E/K ,s).

Conjecturally,
r = ran.
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Kummer sequence

Exact sequence of GK modules
Let K = imaginary quadratic field. Consider the short exact
sequence of modules

0 // Ep // E
p // E // 0.

Descent exact sequence
Taking Galois cohomology in GK , we obtain

0 // E(K )/pE(K )
δ // H1(K ,Ep) // H1(K ,E)p // 0.
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Selmer group and Shafarevich-Tate group

Local cohomology

For a place v of K , K ↪→ Kv induces Gal(Kv/Kv )−→Gal(K/K ).

0 // E(K )/pE(K )
δ //

��

H1(K ,Ep) //

��

ρ

''

H1(K ,E)p //

r
��

0

0 // ∏v E(Kv )/pE(Kv )
δ // ∏v H1(Kv ,Ep) // ∏v H1(Kv ,E)p // 0

Definition
Selp(E/K ) = ker(ρ)

Ø(E/K )p = ker(r)
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Importance of the Selmer group

Information on the algebraic rank r

0 // E(K )/pE(K )
δ // Selp(E/K ) //Ø(E/K )p // 0

relates r to the size of Selp(E/K ).

Shafarevich-Tate conjecture

The Shafarevich groupØ(E/K ) is conjecturally finite

=⇒ Selp(E/K ) = δ (E(K )/pE(K ))

for all but finitely many p.
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From analytic to algebraic rank

Gross, Zagier

L′(E/K ,1) = ∗ height(yK ),

where yK ∈ E(K ) Heegner point of conductor 1. Hence,

ran = 1 =⇒ r ≥ 1.

Kolyvagin

If yK is of infinite order in E(K ) then Selp(E/K ) has rank 1 and
so does E(K ). Hence,

ran = 1 =⇒ r = 1 & ran = 0 =⇒ r = 0.

Remark
Both of these theorems require the modularity of elliptic curves
proved by Wiles, Breuil, Diamond, Conrad and Taylor.
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From algebraic to analytic rank

Skinner, Urban
Let rp = rk(HomZp (Selp∞(E/K ),Q/Z)),

rp = 0 =⇒ ran = 0.

Skinner
For certain elliptic curves,

r = 1 &Ø< ∞ =⇒ ran = 1.

Wei Zhang
For large classes of elliptic curves,

rp = 1 =⇒ ran = 1.
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Probabilistic result

Bhargava, Shankar

Av Sel5(E(Q)) = 6.

=⇒ average rank of E.C over Q ordered by height ≤ 1

=⇒ at least 4/5 of E.C over Q have rank 0 or 1 and at least
1/5 of of E.C over Q have rank 0

Bhargava, Skinner, Wei Zhang

At least 66% of E.C over Q satisfy BSD and have finite
Shafarevich group.
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From elliptic curve to modular form

Generalization

E  f , Tp(E) A

f = newform of even weight
A = p-adic Galois representation associated to f ,
higher-weight analog of the Tate module Tp(E)

Notation
f normalized newform of level N ≥ 5 and even weight
r + 2≥ 2.
K = Q(

√
−D) imaginary quadratic field with odd

discriminant satisfying the Heegner hypothesis with
|O×K |= 2.
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Set up

Algebraic Hecke character

ψ : A×K −→ C× Hecke character of K of infinity type (r ,0)

=⇒ there is an E.C A defined over the Hilbert class field K1 of
K with CM by OK .

Ring of coefficients and prime p

Let OF be the ring of integers of

F = Q(a1,a2, · · · ,b1,b2, · · ·),

where the ai ’s are the coefficients of f and the bi ’s are the
coefficients of θψ . Let p be a prime with

(p,NDφ(N)NAr !) = 1,

where NA is the conductor of A.
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Motive associated to f and ψ.

Galois representations associated to f and A

f  Vf , the f -isotypic part of the p-adic étale realization of
the motive associated to f by Deligne.
A VA, the p-adic étale realization of the motive
associated to A.

Vf and VA give rise (by extending scalars appropriately) to free
OF ⊗Zp-modules of rank 2.

Galois representation associated to f and A

V = Vf ⊗OF⊗Zp VA(r + 1)

V℘1 its localization at a prime ℘1 in F dividing p, is a four
dimensional representation of Gal(Q/Q).
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Generalized Heegner cycles (Bertolini, Darmon,
Prasana)

Level N structure
Heegner hypothesis
=⇒ there is an ideal N of OK satisfying OK/N ' Z/NZ
=⇒ level N structure on A, that is a point of exact order N
defined over the ray class field L1 of K of conductor N .

GHC of conductor i
Consider (ϕi ,Ai) where Ai is an E.C defined over K1 with level
N structure and ϕi : A−→ Ai is an isogeny over K .
 codimension r + 1 cycle on V

Υϕi = Graph(ϕi)
r ⊂ (A×Ai)

r ' (Ai)
r ×Ar

 GHC ∆ϕi = er Υϕi of conductor i defined over Li = L1Ki ,
where Ki = ring class field of K of conductor i .
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Selmer group

Definition
The Selmer group

S ⊆ H1(L1,V℘1/p)

consists of the cohomology classes whose localizations at a
prime v of L1 lie in{

H1(Lur
1,v/L1,v ,V℘1/p) for v not dividing NNAp

H1
f (L1,v ,V℘1/p) for v dividing p

where L1,v is the completion of L1 at v , and

H1
f (L1,v ,V℘1/p)

is the finite part of H1(L1,v ,V℘1/p).
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Analog of the transition map

Kuga-Sato like variety

Wr = (E ×XN · · ·×XN E )c,s = Kuga-Sato variety of dimension
r + 1.

X = Wr ×XN Ar .

Chow group

CH r (X/L1)0 = r -th Chow group of X over L1 = group of
homologically trivial cycles on X of codimension r modulo
rational equivalence.

p-adic Abel-Jacobi map

φ : CH r (X/L1)0 −→ H1(L1,V )
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Analog of the BSD conjecture

Beilinson-Bloch’s conjecture

rank(Im(φ)) = ords=r+1L(f ⊗θψ ,s).

Conjectures on Φ

Ker(Φ) = 0
Im(Φ) = S.

Nekovar (ψ of infinity type (0,0) )

Assuming Φ(Heegner cycle) is not torsion,

rank(Im(Φ)) = 1.

Results of Brylinski and Gross-Zagier p-adic analog of
Beilinson-Bloch (Perrin-Riou).

Yara Elias On the Selmer group



Analog of the BSD conjecture

Beilinson-Bloch’s conjecture

rank(Im(φ)) = ords=r+1L(f ⊗θψ ,s).

Conjectures on Φ

Ker(Φ) = 0
Im(Φ) = S.

Nekovar (ψ of infinity type (0,0) )

Assuming Φ(Heegner cycle) is not torsion,

rank(Im(Φ)) = 1.

Results of Brylinski and Gross-Zagier p-adic analog of
Beilinson-Bloch (Perrin-Riou).

Yara Elias On the Selmer group



Analog of the BSD conjecture

Beilinson-Bloch’s conjecture

rank(Im(φ)) = ords=r+1L(f ⊗θψ ,s).

Conjectures on Φ

Ker(Φ) = 0
Im(Φ) = S.

Nekovar (ψ of infinity type (0,0) )

Assuming Φ(Heegner cycle) is not torsion,

rank(Im(Φ)) = 1.

Results of Brylinski and Gross-Zagier p-adic analog of
Beilinson-Bloch (Perrin-Riou).

Yara Elias On the Selmer group



Main theorem

Assumptions

(p,NDφ(N)NAr !) = 1
G = Gal

(
L1(V℘1/p)

/
L1

)
' Aut(V℘1/p)

V℘1/p is a simple Aut(V℘1/p)-module
the eigenvalues of the generator Fr(v) of Gal(Lur

1,v/L1,v )
acting on V℘1 are not equal to 1 modulo p for v dividing
NNA

Statement
If Φ(∆ϕ1) 6= 0, then the Selmer group S has dimension 1 over
OF ,℘1/p, the localization of OF at ℘1 mod p.
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Kolyvagin prime

Kolyvagin prime
A rational prime ` is a Kolyvagin prime if(

−D
`

)
=−1, a` ≡ b` ≡ `+ 1≡ 0 mod p.

Conductors of GHC
Let n = ∏` be a squarefree integer where the `′s are Kolyvagin
primes. Then

Gn = Gal(Ln/L1)'Gal(Kn/K1)'∏
`

Gal(K`/K1).

Let σ` be a generator of the cyclic group Gal(K`/K1) of order
`+ 1.
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Euler system properties

Set up

Consider isogenous pairs (An,ϕn), (Am,ϕm) where n = `m for
an odd prime `.

Global compatibilies

T`Φ(∆ϕm ) = corLn,Lm Φ(∆ϕn ) = a`b`Φ(∆ϕm ).

Local compatibilities

resλn Φ(∆ϕn ) = Frob`(Ln/Lm) resλm Φ(∆ϕm ).

We denote by yn the image of Φ(∆ϕn ) ∈H1(Ln,V ) in H1(Ln,Vp).
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Lifting the cohomology classes

Proposition
The restriction map

resL1,Ln : H1(L1,Vp)−→ H1(Ln,Vp)Gn

is an isomorphism.

Operators
Let

Tr` =
`

∑
i=0

σ
i
`, D` =

`

∑
i=1

iσ i
`.

Define
Dn = ∏

`|n
D` ∈ Z[Gn].
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Kolyvagin cohomology classes

Proposition

Dnyn ∈ H1(Ln,Vp)Gn .

=⇒ Dnyn can be lifted to P(n) ∈ H1(L1,Vp).

Local properties of P(n)

Let v be a prime of L1.
If v |NAN, then resv (P(n)) is trivial.
If v - NANnp, then resv (P(n)) lies in H1(Lur

1,v/L1,v ,Vp).
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Extension by Kolyvagin classes

Global pairing

The restriction map where L = L1(Vp)

r : H1(L1,Vp)−→ H1(L,Vp)G = HomG(Gal(Q/L),Vp)

is injective and induces the evaluation pairing

[ , ] r(S)×Gal(Q/L)−→ Vp.

Notation

GalS(Q/L) = annihilator of r(S)

LS = extension of L fixed by GalS(Q/L)

GS = Gal(LS/L)

I = Gal(LS/L(y1))
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Choice of a pertinent Kolyvagin class

Proposition
There is a Kolyvagin prime q such that

Frobq(LS/Q) = τh, h ∈Gal(LS/L), hτ+1 /∈ I and resβ y1 6= 0

for some prime β in L1 above q.

Scheme

LS

H0 = L(y1)

I

77

H1 = L(P(q))

L = L1(Vp)

Vp

77
GS

OO

Vp

gg
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Local Tate duality

Proposition

P(n) belongs to the (−1)ω(n)ε-eigenspace where ω(n) is the
number of distinct prime factors of n.

Local pairing
Using local Tate duality, we have a perfect local pairing

〈 . , . 〉λ ′ : H1(Lur
1,λ ′/L1,λ ′ ,Vp)×H1(Lur

1,λ ′ ,Vp)−→ Z/p.

The action of complex conjugation induces non-degenerate
pairings of eigenspaces.
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From local to global information

Reciprocity law
We have

∑
λ ′|`|n
〈sλ ′ , resλ ′P(n)〉λ ′ = 0.

Proposition 1

We have S−ε is of dimension 0 over OF ,℘1/p.

Proposition 2

We have S+ε is of dimension 1 over OF ,℘1/p.
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Sketch of proof 1

Consider P(`) where ` is a Kolyvagin prime satisfying

Frob`(LS/Q) = τh, h ∈GS, h /∈Gal(LS/L(y1)).

P(`) belongs to the −ε-eigenspace. Let s ∈ S−ε . Then

∑
λ ′|`
〈resλ ′s, resλ ′P(`)〉−ε

λ ′ = 0

=⇒ resλ ′s = 0
=⇒ s(G+

S ) = 0 by Cebotarev’s density theorem
=⇒ s : G−S −→ V±p
=⇒ s(G−S ) = s = 0 since V±p are of rank 2 over OF ,℘1/p and Vp
has no non-trivial G-submodules.
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Sketch of proof 2

Consider P(`q) where ` be a Kolyvagin prime such that
Frob`(LS/Q) = τ i , i ∈Gal(LS/L(y1))

Frob`(L(P(q))/Q) = τ j , j ∈Gal(L(P(q))/L), jτ+1 6= 1.
P(`q) belongs to the ε-eigenspace. Let s ∈ S+ε . Then

∑
λ ′|λ
〈resλ ′s, resλ ′P(`q)〉+ε

λ ′ + ∑
β ′|β
〈resβ ′s, resβ ′P(`q)〉+ε

β ′ = 0

=⇒ resλ ′s = 0
=⇒ s(I+) = 0 by Cebotarev’s density theorem
=⇒ s : I− −→ V±p
=⇒ s(I−) = s(I) = 0
=⇒ s ∈ HomG(Gal(LS/L)/I,Vp)' HomG(Vp,Vp)' OF ,℘1/p.
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The end

Thank You!
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