
Genus 3 curves with nontrivial multiplications:
Questions

Jerome William Hoffman

Louisiana State University

April 14, 2015

hoffman@math.lsu.edu



Slides can be found at
https://www.math.lsu.edu/∼hoffman/tex/EndJac/EndJacQuestions2.pdf

hoffman@math.lsu.edu



1 The Problem and Background

2 Review of genus 2

3 g=3

4 Galois representations and automorphic forms

hoffman@math.lsu.edu



The Problem and Background

Let X be a projective nonsingular algebraic curve of genus g
(defined over a field of characteristic 0). Let A = Jac(X ) be its
Jacobian. This is a principally polarized abelian variety (ppav) of
dimension g defined over the same field as X .

Moduli spaces

Let Mg be the moduli space (coarse) of smooth projective curves
of genus g . This has dimension 3g − 3 if g ≥ 2.
Let Ag be the moduli space (coarse) of ppav of dimension g . This
has dimension g(g + 1)/2.
The map X 7→ Jac(X ) : Mg → Ag is an injection (Torelli).

When g = 2, 3, we have 3g − 3 = g(g + 1)/2, so that in these
cases, Mg and Ag are birationally equivalent.
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The Problem and Background

Recall: for any abelian variety A, End(A)⊗Q is a
finite-dimensional semisimple algebra with involution (usually just
Q). The different possible types were classified by A. A. Albert.

Problem
Fix an order R in an admissible algebra in the above sense. Write
down universal families of curves X of genus 3 such that
End(Jac(X )) contains R .

To be more precise, we want to find equations Shimura varieties
and the families of abelian varieties (principally polarized of
dimension 3) that they parametrize.
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Review of genus 2

Problem
Construct families of genus 2 curves

X : y2 = f (x), deg f (x) = 5 or 6.

such that End(Jac(X ))⊗Q is nontrivial, i.e., larger than Q.

Interesting cases
1 End(Jac(X ))⊗Q = quartic CM field. These are isolated in

moduli. Applications to cryptography (K.Lauter).
2 End(Jac(X ))⊗Q = Q(

√
D) a real quadratic field. The

Shimura variety is a Hilbert modular surface (a Humbert
surface).

3 End(Jac(X ))⊗Q = B , an indefinite quaternion division
algebra over Q. This gives a Shimura curve.
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Review of genus 2

Method I: Automorphic Forms
1 Algebraic moduli of genus 2 curves y2 = f6(x) are given by the

invariant theory of binary sextic forms. These were determined
by Clebsch.

2 One can reconstruct a genus 2 curve from its Clebsch/Igusa
invariants: Mestre’s algorithm.

3 Analytic moduli of genus 2 curves are given by a point in
Siegel’s spaces of degree 2: τ ∈ H2.

4 The bridge between analytic moduli and algebraic moduli is
given by automorphic forms, specifically theta constants.
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Review of genus 2

Method I: Automorphic Forms
1 The explicit expressions of the Igusa/Clebsch invariants as

Siegel modular forms were given by Thomae, Bolza and Igusa.
2 Idea: one can convert the relatively simple formulas for

Shimura subvarieties of H2 into algebraic equations in the
Igusa/Clebsch invariants. This has been implemented by
Runge and Gruenewald.

3 Example: τ =

(
τ1 τ2
τ2 τ3

)
∈ H2 with τ1 = τ2 + τ3 gives an

abelian variety
Aτ := C2/Z2 + Z2τ

whose endomorphism ring contains Q(
√
5) (Humbert).
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Review of genus 2

Method I: Rosenhain Invariants; Thomae’s formulas
We can write a genus 2 curve as

y2 = x(x − 1)(x − λ1)(x − λ2)(x − λ3)

Then

λ1 =
θ2
0000θ

2
0010

θ2
0011θ

2
0001

, λ2 =
θ2
0010θ

2
1100

θ2
0001θ

2
1111

, λ3 =
θ2
0000θ

2
1100

θ2
0011θ

2
1111

,

where θm = θm(0, τ), m = (m′,m′′) ∈ Z4, τ ∈ H2, z ∈ C2 and

θm(z, τ) =
∑

p∈Z2
e

(
1

2

(
p +

m′

2

)
τ

t
(

p +
m′

2

)
+

(
p +

m′

2

)
t
(

z +
m′′

2
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.

e(w) := exp(2πiw).
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Review of genus 2

Method I: Humbert surface for D = 5
1 A compactification of A2[2] has a model in P5 given by

s1 = 0, s22 − 4s4 = 0, sk =
6∑

i=1

xk
i ,

where xi is a linear combination of theta constants. Each si is
a Siegel modular form of weight 2i .

2 In A2[2] Humbert surfaces of discriminant 5 have equations

2p2,j + p21,j = 0, j = 1, ..., 6,

where pk,j is kth elementary symmetric function on the 5
coordinates excluding xj .
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Review of genus 2

Method I: Shimura curves; A. Besser
1 In A2[2], Shimura curves of discriminant 6 have equations

3x2i = s2, xi = −xj , 1 ≤ i < j ≤ 6.

2 In A2[2], Shimura curves of discriminant 10 have equations

xi + 5xj = 0, 3x2i = s2, 1 ≤ i 6= j ≤ 6.

3 In A2[2], Shimura curves of discriminant 15 have equations

15(xi + xj)
2 = 4(s2 + 3xixj), 6xi + 5xj + 5xk = 0,

1 ≤ i 6= j 6= k 6= i ≤ 6.
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Review of genus 2

Method II: Kummer Surfaces. Besser; Elkies and Kumar
1 If X is a genus 2 curve then the Kummer surface Km(X ) is

the nonsingular model of Jac(X )/± id . This is a K3 surface of
high rank : rank(NS(Km(X )) ≥ 17.

2 If Jac(X ) has additional endomorphisms, then the rank of
Km(X ) should go up.
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Review of genus 2

Dolgachev and A. Kumar proved:

Theorem
There is an isomorphism ψ : M2 → EE8,E7 , where EE8,E7 is the
moduli space of elliptic K3 surfaces with an E8-fibre at ∞ and and
E7-fibre at 0.

Let A be the elliptic K3 surface with equation

y2 = x3 − t3
(
I4
12

+ 1
)
x + t5

(
I10
4
t2 +

I2I4 − 3I6
108

t +
I2
24

)
,

which has fibres of type E8 and E7 respectively at t =∞ and t = 0.
Let C be the genus 2 curve with Igusa-Clebsch invariants
(I2 : I4 : I6 : I10). Then A and Km(C ) are Shioda-Inose twins.
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Review of genus 2

Theorem

Consider the lattice of rank 18: LD := E8(−1)2 ⊕OD . Let FLD be
the moduli space of K3 surface that are lattice polarized by LD .
Then there is a surjective birational morphism FLD → HD .

Therefore, to construct the Humbert surface HD for OD ⊂ Q(
√
D)

one attempts to realize LD as the Néron-Severi lattice of an elliptic
K3 surface. One might have to modify this to a new elliptic K3
surface so as to have fibers of type E7 and E8 (2 and 3 neighbors).
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Review of genus 2

Method II: Humbert surface with D = 5
The elliptic surface is

y2 = x3 +
1
4
t3(−3g2t + 4)x − 1

4
t5(4h2t2 + (4h + g3)t + (4g + 1))

The Hilbert modular surface (double cover of the Humbert surface
H5) is

z2 = 2(6250h2−4500g2h−1350gh−108h−972g5−324g4−27g3)

The Igusa-Clebsch invariants are

(I2 : I4 : I6 : I10) = (6(4g + 1), 9g2, 9(4h + 9g3 + 2g2), 4h2).
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Review of genus 2

Method II: Shimura curve with D = 6
The elliptic surface is

y2 = x3 + tx2 + 2bt3(t − 1)x + b2t5(t − 1)2

The Shimura curve is X (6)/〈w2,w3〉 ∼= P1 with coordinate b. This
is the arithmetic triangle group (2,4,6). X (6) has the model
s2 + 27r2 + 16 = 0, where b = r2.
The Igusa-Clebsch invariants are

(I2 : I4 : I6 : I10) = (24(b + 1), 36b, 72b(5b + 4), 4b3).

There are CM points of discriminants −3,−4,−24,−19
respectively at b =∞, 0,−16/27, 81/64.
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g=3

Genus 3 curves
M3 and A3 are birationally equivalent, but now there is a
distinction between hyperelliptic and nonhyperelliptic curves.

A hyperelliptic curve has an equation

y2 = f8(x), deg f8 = 8.

There are many models of nonhyperelliptic genus 3 curves, the
simplest being the the canonical model, which is a smooth
projective plane quartic

F4(x , y , z) = 0.
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g=3

Genus 3 curves: moduli
Algebraic moduli of genus 3 hyperelliptic curves is given by the
invariant theory of binary octic forms. These were determined by
Shioda.

As in the case of genus 2, these invariants can be expressed in
terms of Siegel modular forms of degree 3 (theta constants:
Thomae’s formulas).

Algebraic moduli of genus 3 nonhyperelliptic curves is given by the
invariant theory of ternary quartic forms.

Studied by many people, e.g., E. Noether, the complete
determination of these is quite recent - Dixmier-Ohno invariants.
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g=3

Genus 3 curves: moduli
In principle, these invariants can be expressed in terms of Siegel
modular forms of degree 3.

The necessary formulas are implicit in 19th century works, especially
Frobenius and Schottky, but to my knowledge, they are not in the
modern literature (but see Dolgachev-Ortland and Looijenga).
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g=3

Problem: genus 3 hyperelliptic moduli
Give the analog of Mestre’s algorithm for constructing a
hyperelliptic curve of genus 3 from its Shioda invariants.
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g=3

Genus 3 curves: nonhyperelliptic moduli

Let (P7
2)ss be the subset of (P2)7 which is semistable in the sense

of Mumford’s Geometric Invariant theory for the canonical action of
PGL3.
Then there is a canonical isomorphism

(P7
2)ss ∼= M3[2] −Hyp3[2],

where M3[2] is the moduli space of genus 3 curves with a level 2
structure on their Jacobians, and Hyp3[2] is the hyperelliptic locus.

Given (p1, ..., p7) ∈ (P7
2)ss , blowing up these 7 points gives a

delPezzo surface F together with a degree 2 map F → P2, which
is branched along a smooth quartic curve (of genus 3), C . This C
is birationally equivalent to a sextic curve S ⊂ P2 which has nodes
at p1, ..., p7.
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g=3

Genus 3 curves: nonhyperelliptic moduli
Schottky showed that the nodal sextic S had equations

La,bLc,dQa,cQb,d − La,cLb,dQa,bQc,d = 0,

where {a, b, c , d} ⊂ {1, 2, 3, 4, 5, 6, 7} and

La,b = the line connecting a, b.
Qa,b = the conic through {1, 2, 3, 4, 5, 6, 7} − {a, b}.

Moreover, he showed that the coefficients in the La,b,Qa,b where
given by explicit expressions in the theta constants attached to the
period matrix τ ∈ H3 of the curve C (or S).
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g=3

Problem: nonhyperelliptic moduli as Siegel modular forms
Give a modern treatment of these results of Frobenius and
Schottky.

These results express the algebraic moduli of nonhyperelliptic genus
3 curves as automorphic forms on H3

Theorem: Kondo and Looijenga
There is an isomorphism between the algebra of regular functions
on the space of quartic polynomials in 3 variables invariant under
SL(3,C) and a space of meromorphic automorphic forms on the
complex 6-ball.

Thus the moduli of nonhyperelliptic genus 3 curves is essentially a
quotient Γ\B6, for an arithmetic subgroup Γ ⊂ U(6, 1).

hoffman@math.lsu.edu



g=3

Problem: nonhyperelliptic moduli and automorphic forms
Relate these 2 different descriptions of moduli space of
nonhyperelliptic genus 3 curves via automorphic forms.

Theorem: Kondo, Looijenga and Artebani
The moduli space of nonhyperelliptic curves of genus 3 is a period
domain for a family of K3 surfaces.

Problem: nonhyperelliptic moduli and K3 surfaces
Describe the K3 surfaces corresponding to curves of genus 3 with
nontrivial multiplications.

The model here are the results of Elkies and Kumar in genus 2.
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g=3

Genus 3 curves: endomorphisms of Jacobians
Some interesting cases:

1 A degree 6 CM number field.
2 An imaginary quadratic field Q(

√
−D) (Picard modular case).

3 A totally real cubic number field (Hilbert modular case).

Problem: endomorphisms of Jacobians
Write down equations for the Shimura varieties belonging to the
above endomorphism algebra and the universal families of genus 3
to which they correspond.

Very few explicit examples are known.
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g=3

Picard’s family
Picard studied the family of genus 3 curves:

Ca,b : y3 = x(x − 1)(x − a)(x − b)

End(Jac(Ca,b)) contains R = Z[1+
√
−3

2 ].

The parameter space is isomorphic to Γ\B2 where Γ ⊂ SU(2, 1;R)
is a congruence subgroup, B2 ⊂ C2, the unit ball.

This is a generalized hypergeometric family.
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g=3

A Hilbert modular family
Joint with:

Dun Liang
Zhibin Liang
Ryotaro Okazaki
Yukiko Sakai
Haohao Wang

We have constructed a universal (3-dimensional) family of
nonhyperelliptic curves C with the property that End(Jac(C))
contains Z[ζ7 + ζ̄7], the integers in a cubic number field.
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g=3

A Hilbert modular family
The construction is based on a method of Shimada and Ellenberg.
Basic idea: Let G be a finite group acting on a curve Y . If H ⊂ G
is a subgroup we let X = Y /H. We get an action of the “Hecke
algebra” Q[H\G/H] on Jac(X ).

Q[H\G/H] ⊂ Q[G ] is the subalgebra generated by τHgτH where

τH =
1

#H

∑
h∈H

h.

Our case:

G = D7 =< σ, τ | σ7 = τ2 = 1, τστ = σ6 >

and H =< τ >. Q[H\G/H] = Q[ζ+7 ].

hoffman@math.lsu.edu



g=3

{e}

〈τ〉

D7

〈σ〉

Y genus 8

genus 3 X

P1

C genus 2

h

v

x

q unramified
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g=3

A Diophantine equation
Problem. Find solutions to the following equation:

a(x)2 − s(x)b(x)2 = c(x)7

where a, b, c , s are polynomials in one variable of respective degrees
7, 4, 2, 6.

Why? Let C : y2 = s(x), a genus 2 curve. Let ϕ = a(x) + b(x)y ,
an element of its function field k(C ) = k(x , y). Then k(x , y , 7

√
ϕ)

is an unramified cyclic Galois extension of k(x , y) of degree 7.
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Galois representations and automorphic forms

If X is a (smooth, projective) curve of genus g , say defined over Q,
there are l -adic representations

ρ : Gal(Q/Q)→ GSp(H1(X ⊗Q, Ql )) = GSp2g (Ql ).

In general, one expects that the image is all of GSp2g (Ql ).

If End(Jac(X ))⊗Q is larger than Q, the Galois image will be
smaller.

For instance, in our case (genus 3 with endomorphisms by a totally
real cubic number field K ) we get Galois representations of
GL2-type.
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Galois representations and automorphic forms

A curve X with multiplication by Z[ζ7 + ζ̄7]

x4 +
345x3y

4
− 16038x3z

7
+

14499x2y2

14
− 553623

4
x2yz +

4273137x2z2

2

+
2153679xy3

28
+

28315359
7

xy2z +
659015811

7
xyz2 − 6866481456xz3

7

− 28405935y4

7
− 20973087y3z − 10692058320y2z2

7
− 205496736912yz3

7

+
1321162646760z4

7
= 0
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Galois representations and automorphic forms

Zeta function and Galois representation for X

We compute the zeta function of the scheme X/Z:

Z (X/Fp, x) = exp

∑
ν≥1

Nνxν/ν


=

1 + apx + bpx2 + cpx3 + pbpx4 + p2apx5 + p3x6

(1− x)(1− px)

for the primes p 6= 2, 3, 7, 73, 109, 829, 967 where Nν = #X (Fpν ).

The numerator in the above expression equals

hp(x) := det
(
1− xρ(Frobp) | H1

et(X ⊗Q,Ql )
)
, l 6= p

where ρ : Gal(Q/Q)→ GSp(H1
et(X ⊗Q,Ql )) is the canonical

Galois representation in étale cohomology, and Frobp=Frobenius.
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Galois representations and automorphic forms

Zeta function and Galois representation for X
Since the Jacobian of X has endomorphisms in the field
K = Q(ζ7 + ζ7), this Galois representation is of GL2-type.

This implies that the characteristic polynomials hp(x) factor as
gp(x)gσp (x)gσ

2
p (x) for a quadratic polynomial gp(x) ∈ ZK [x ], where

ZK = Z[t]/(t3 + t2 − 2t − 1) is the ring of integers of K and σ
generates the Galois group of K over Q.
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Galois representations and automorphic forms

p gp(x) Trace
5 1− tx + 5x2 −1
11 1− tx + 11x2 −1
13 1 + (3− t)x + 13x2 −10
17 1 + (−1− 4t)x + 17x2 −1
19 1 + (6− 3t − 2t2)x + 19x2 −11
23 1 + (8− t − 3t2)x + 23x2 −10
29 1 + (8− 5t − 6t2)x + 29x2 1
31 1 + (7− t − 2t2)x + 31x2 −12
37 1 + (6− 4t − 5t2)x + 37x2 3
41 1 + 8x + 41x2 −24
43 1 + (4− t − 2t2)x + 43x2 −3

Table : Factorization of hp(x) = gp(x)gσ
p (x)gσ2

p (x), trace of Frobp at
good primes. ZK = Z[t]/(t3 + t2 − 2t − 1).
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Galois representations and automorphic forms

p gp(x) Trace
47 1 + (10− t − 4t2)x + 47x2 −11
53 1 + (6 + 2t − 5t2)x + 53x2 9
59 1 + (10− 6t − 9t2)x + 59x2 9
61 1 + (−2 + 3t)x + 61x2 9
67 1 + (4− t − 2t2)x + 67x2 −3
71 1 + (10− 4t − 5t2)x + 71x2 −9
79 1 + (7− 8t − 9t2)x + 79x2 16
83 1 + (1− 3t − 6t2)x + 83x2 24
89 1 + (19− t − 11t2)x + 89x2 −3

Table : Factorization of hp(x) = gp(x)gσ
p (x)gσ2

p (x), trace of Frobp at
good primes. ZK = Z[t]/(t3 + t2 − 2t − 1).
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Galois representations and automorphic forms

Thanks to

Ling Long, Luca Candelori, Jennifer Li
and Robert Perlis!

hoffman@math.lsu.edu


	The Problem and Background
	Review of genus 2
	g=3
	Galois representations and automorphic forms

