Computing modularity of some Calabi-Yau threefolds

Alexander Molnar, Queen's University Work partially supported by Queen's University, the Fields Institute, and the Ontario Government
April 2015

Preliminaries

Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

Preliminaries

Borcea studied crepant resolutions of quotients of the form

$$
\left(E_{1} \times E_{2} \times E_{3}\right) /\langle\iota \times \iota \times \mathrm{id}, \iota \times \mathrm{id} \times \iota\rangle
$$

He showed the Calabi-Yau threefolds of CM-type in this family were the varieties with each of the E_{i} having CM.

Calabi-Yau Threefolds

Let E_{k} / \mathbb{C} be an elliptic curve with an automorphism of order
Preliminaries
Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
For any subgroup H_{k} of G_{k} we may consider the quotient

$$
\left(E_{k} \times E_{k} \times E_{k}\right) / H_{k},
$$

and a crepant resolution.

Interest

We have two main focuses with the Calabi-Yau threefolds of this form.
(1) Study the 'easy' to understand rigid Calabi-Yau threefolds in this construction,
(2) Push this towards the non-rigid threefolds and see how much can be extended and said.

Modularity of X_{4}

Start with $k=4$ and G_{4}, e.g.,

- $E_{4}: y^{2}=x^{3}-x$,
- $\iota_{4}(x, y)=(-x, i y)$, and
- $X_{4}:=\widehat{E_{4}^{3} / G_{4}}$.
- This is defined over \mathbb{Q}.
- This is a rigid threefold. $\left(h^{1,1}=90\right.$.)
- Thus, it is modular by Gouvêa-Yui (Serre).

L-function of X_{4}

Note that

$$
H_{\ell}^{3}\left(\widetilde{{\overline{E_{4}}}^{3} / G_{4}}\right) \simeq H_{\ell}^{3}\left({\overline{E_{4}}}^{3} / G_{4}\right),
$$

and

$$
H_{\ell}^{3}\left({\overline{E_{4}}}^{3}\right)^{G_{4}}=\left(H_{\ell}^{1}\left(\overline{E_{4}}\right) \otimes H_{\ell}^{1}\left(\overline{E_{4}}\right) \otimes H_{\ell}^{1}\left(\overline{E_{4}}\right)\right)^{G_{4}}
$$

which is 2-dimensional.

To make things explicit, we will work with the Galois representation

$$
\rho: G_{\mathbb{Q}} \rightarrow \operatorname{Aut}_{\overline{\mathbb{Q}_{\ell}}}\left(\left(V_{\ell}\left(E_{4}\right) \otimes V_{\ell}\left(E_{4}\right) \otimes V_{\ell}\left(E_{4}\right)\right)^{G_{4}}\right),
$$

where $V_{\ell}\left(E_{4}\right):=T_{\ell}\left(E_{4}\right)^{\vee} \otimes \overline{\mathbb{Q}_{\ell}}$.

Galois representation on X_{4}

For simplicity, denote the endomorphism ι_{4} of E_{4} by $[i]$ and the induced action on $V_{\ell}\left(E_{4}\right)$ by $[i]_{*}$. Note that $[i]^{2}=[-1]$.

For any $\sigma \in G_{\mathbb{Q}}$ and $(x, y) \in E_{4}(\overline{\mathbb{Q}})$

$$
\begin{aligned}
\sigma([i](x, y)) & =(-\sigma(x), \sigma(i) \sigma(y)) \\
& =[\sigma(i)] \sigma((x, y))=\chi(\sigma)[i] \sigma((x, y)),
\end{aligned}
$$

where $\chi: G_{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}^{\times}$is the (non-trivial) Dirichlet character of $\mathbb{Q}(i)$. So

$$
\begin{aligned}
i \sigma_{*}(v) & =\sigma_{*}(i v)=\sigma_{*}\left([i]_{*}(v)\right)=(\sigma \circ[i])_{*}(v) \\
& \left.=([\chi(\sigma) i] \circ \sigma])_{*}(v)=[\chi(\sigma)]_{*}[i]_{*}\left(\sigma_{*}\right)\right)(v) \\
& =\chi(\sigma)[i]_{*}\left(\sigma_{*}(v)\right) .
\end{aligned}
$$

Of particular interest, if c denotes complex conjugation, then $w=c_{*}(v)$ is in the $(-i)$-eigenspace of $[i]_{*}$.

Frobenius on X_{4}

For a prime $p \neq 2$, if $\chi\left(\operatorname{Frob}_{p}\right)=1$ the above shows the action of $\left(\mathrm{Frob}_{p}\right)_{*}$ is of the form

$$
\left(\begin{array}{cc}
\alpha_{p} & 0 \\
0 & \beta_{p}
\end{array}\right)
$$

and otherwise when $\chi\left(\operatorname{Frob}_{p}\right)=-1$, of the form

$$
\left(\begin{array}{cc}
0 & h_{p} \\
k_{p} & 0
\end{array}\right)
$$

Preliminaries

Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

Thus, on the threefold we have the respective actions

$$
\left(\begin{array}{cc}
\alpha_{p}^{3} & 0 \\
0 & \beta_{p}^{3}
\end{array}\right), \quad\left(\begin{array}{cc}
0 & h_{p}^{3} \\
k_{p}^{3} & 0
\end{array}\right) .
$$

Trace of Frobenius

Thus we find

$$
\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\alpha_{p}^{3}+\beta_{p}^{3}=\left(\alpha_{p}+\beta_{p}\right)^{3}-3 p\left(\alpha_{p}+\beta_{p}\right)
$$

Coincidentally,
Lemma
Let ψ be a Hecke character of an imaginary quadratic field K and suppose f_{ψ}, the cusp form associated to ψ, has trivial Nebentypus. Suppose that we have Fourier q-expansions

$$
f_{\psi}=\sum a_{n} q^{n} \quad f_{\psi^{3}}=\sum b_{n} q^{n}
$$

Then

$$
b_{p}=a_{p}^{3}-3 p a_{p} .
$$

L-function of X_{4}

Theorem
Let H be a subgroup of G_{4} such that X_{4}, a crepant resolution of E_{4}^{3} / H, is a rigid Calabi-Yau threefold. We have

$$
L\left(X_{4}, s\right)=L\left(s, \chi_{4}^{3}\right)
$$

where χ_{4} is the Hecke character such that

Preliminaries

Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

$$
L\left(E_{4}, s\right)=L\left(s, \chi_{4}\right)
$$

Twists

Let $E_{4}(n)$ denote the twist $y^{2}=x^{3}-n^{2} x$, and $X_{4}(n)$ a crepant resolution of $E_{4}(n)^{3} / G_{4}$. One similarly gets

Theorem
Let H be a subgroup of G_{4} such that a crepant resolution $X_{4}(n)$ of $E_{4}(n)^{3} / H$ is a rigid Calabi-Yau threefold. We have

$$
L\left(X_{4}(n), s\right)=L\left(s, \chi_{4}^{3}\right)
$$

Alexander Molnar, Queen's University
where χ_{4} is the Hecke character such that

$$
L\left(E_{4}(n), s\right)=L\left(s, \chi_{4}\right)
$$

Similar for E_{3} / E_{6} and twists.

Special values

Using work of Waldspurger, one may compute the vanishing and non-varnishing of the respective L-series found above.

Theorem
Let $E_{4}: y^{2}=x^{3}-x$, and $X_{4}(-n)$ a crepant resolution of $E_{4}(-n)^{3} / G_{4}$. For any odd square-free $n \in \mathbb{N}$ we have

$$
L\left(X_{4}(-n), 2\right)= \begin{cases}\frac{a_{n}^{2}}{\alpha \sqrt{n^{3}}} & \text { if } n \equiv 1 \quad(\bmod 8) \\ \frac{b_{n}^{2}}{\beta \sqrt{n^{3}}} & \text { if } n \equiv 3 \quad(\bmod 8) \\ 0 & \text { if } n \equiv 5,7 \quad(\bmod 8)\end{cases}
$$

where $\alpha, \beta \in \mathbb{C}^{\times}$and

$$
\begin{gathered}
\sum a_{n} q^{n}=q-3 q^{9}-4 q^{17}+\ldots \in S_{5 / 2}\left(128, \chi_{\text {triv }}\right), \\
\sum b_{n} q^{n}=-q^{3}+5 q^{11}-7 q^{19}+\ldots \in S_{5 / 2}\left(128, \chi_{\text {triv }}\right)
\end{gathered}
$$

Non-rigid construction

Suppose instead, we choose

$$
H_{4}=\left\langle\iota_{4} \times \iota_{4} \times \iota_{4}^{2}\right\rangle \subset G_{4}
$$

and the quotient E_{4}^{3} / H_{4}.

We have $h^{2,1}=1$ and so $Y_{4}=\widetilde{E_{4}^{3} / H_{4}}$ is a non-rigid
Calabi-Yau threefold.

What can we say now?

Preliminaries

Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

Galois representation

We still need only understand the Galois representation on $V_{\ell}\left(E_{4}\right)$, as

$$
H_{\ell}^{3}\left(Y_{4}\right) \simeq\left(V_{\ell}\left(E_{4}\right)^{\otimes 3}\right)^{H_{4}}
$$

and as generators we can take

$$
\begin{aligned}
& x \otimes x \otimes x, x \otimes x \otimes y \\
& y \otimes y \otimes x, y \otimes y \otimes y
\end{aligned}
$$

where (x, y) is a basis for $V_{\ell}\left(E_{4}\right)$.

Action of Frobenius

For $p \neq 2$, and $\chi: G_{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}_{\ell}$ as before, if $\chi\left(\operatorname{Frob}_{p}\right)=1$ the action of Frobenius is given by

$$
\left(\begin{array}{cccc}
\alpha_{p}^{3} & & & \\
& \alpha_{p}^{2} \beta_{p} & & \\
& & \alpha_{p} \beta_{p}^{2} & \\
& & & \beta_{p}^{3}
\end{array}\right)
$$

and otherwise, if $\chi\left(\operatorname{Frob}_{p}\right)=-1$ the action is given by

$$
\left(\begin{array}{llll}
& & & h_{p}^{3} \\
& h_{p} k_{p}^{2} & & \\
k_{p}^{3} & & &
\end{array}\right)
$$

Trace of Frobenius

We have
$\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\left\{\begin{array}{cl}\alpha_{p}^{3}+\alpha_{p}^{2} \beta_{p}+\alpha_{p} \beta_{p}^{2}+\beta_{p}^{3} & \text { if } \chi\left(\operatorname{Frob}_{p}\right)=1, \\ 0 & \text { otherwise }\end{array}\right.$
Note, if $\chi\left(\operatorname{Frob}_{p}\right)=-1$, then $\alpha_{p}, \beta_{p}= \pm i \sqrt{p}$, so

$$
\begin{aligned}
\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right) & =\alpha_{p}^{3}+\alpha_{p}^{2} \beta_{p}+\alpha_{p} \beta_{p}^{2}+\beta_{p}^{3} \\
& =\alpha_{p}^{3}+\beta_{p}^{3}+p\left(\alpha_{p}+\beta_{p}\right) .
\end{aligned}
$$

Hence

$$
L\left(Y_{4}, s\right)=L\left(\operatorname{Sym}^{3} f_{4}, s\right)=L\left(\chi_{4}^{3}, s\right) L\left(\chi_{4}, s-1\right)
$$

where χ_{4} is the Hecke character associated to E_{4}.

Families

Consider again the triple product

$$
E_{4} \times E_{4} \times E_{4}
$$

with the action by $\iota_{4} \times \iota_{4} \times \iota_{4}^{2}$.
Replace this with

Preliminaries
Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

$$
E_{4} \times E_{4} \times E
$$

and the action by $\iota_{4} \times \iota_{4} \times \iota$, where E is any non-CM elliptic curve with hyperelliptic involution ι.

Galois representation

The Galois module of interest is now

$$
\left(V_{\ell}\left(E_{4}\right) \otimes V_{\ell}\left(E_{4}\right) \otimes V_{\ell}(E)\right)^{\left\langle\iota_{4} \times \iota_{4} \times \ell\right\rangle},
$$

so let $V_{\ell}(E)$ have basis ($\left.u, w\right)$ and (for a good prime p) eigenvalues γ_{p}, δ_{p} of Frob_{p}.

A basis for the Galois module is then given by

$$
\begin{aligned}
& x \otimes x \otimes u, x \otimes x \otimes w, \\
& y \otimes y \otimes u, y \otimes y \otimes w .
\end{aligned}
$$

Trace of Frobenius

The CM-elliptic curve still gives rise to two cases. If $\chi\left(\mathrm{Frob}_{p}\right)=1$ the action of Frobenius is given by

$$
\left(\begin{array}{cccc}
\alpha_{p}^{2} \gamma_{p} & & & \\
& \alpha_{p}^{2} \delta_{p} & & \\
& & \beta_{p}^{2} \gamma_{p} & \\
& & & \beta_{p}^{2} \delta_{p}
\end{array}\right)
$$

Preliminaries

Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
and otherwise, if $\chi\left(\operatorname{Frob}_{p}\right)=-1$ the action is given by

$$
\left(\begin{array}{llll}
& & h_{p}^{2} \gamma_{p} & \\
& & & h_{p}^{2} \delta_{p} \\
k_{p}^{2} \gamma_{p} & & & \\
& k_{p}^{2} \delta_{p} & &
\end{array}\right)
$$

L-functions

Hence

$$
\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\left\{\begin{array}{cl}
\left(\alpha_{p}^{2}+\beta_{p}^{2}\right)\left(\gamma_{p}+\delta_{p}\right) & \text { if } \chi\left(\operatorname{Frob}_{p}\right)=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Again, as $\alpha_{p}, \beta_{p}= \pm i \sqrt{p}$ when $\chi\left(\operatorname{Frob}_{p}\right)=-1$ we may simplify to

$$
\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\left(\gamma_{p}+\delta_{p}\right)\left(\alpha_{p}^{2}+\alpha_{p} \beta_{p}+\beta_{p}^{2}-p \chi\left(\operatorname{Frob}_{p}\right)\right)
$$

Alexander Molnar, Queen's University

Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

Hence, the L-function is the product

$$
L\left(f_{E} \times \operatorname{Sym}^{2} f_{4}, s\right) L\left(f_{E} \otimes \chi, s-1\right)^{-1}
$$

Automorphy

$$
L\left(f_{E} \times \operatorname{Sym}^{2} f_{4}, s\right) L\left(f_{E} \otimes \chi, s-1\right)^{-1}
$$

The following shows the L-function is automorphic:

- Sym $^{2} f_{4}$ is automorphic on GL_{3} (Gelbart-Jaquet),

Preliminaries
Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

- $f_{E} \times$ Sym $^{2} f_{4}$ is automorphic on GL_{6} (Kim-Shahidi),
- The product of automorphic L-functions is automorphic (Langlands).

Construction with E_{6}

Similarly with E_{3} / E_{6}.

Except there are no non-rigid Calabi-Yau threefolds Y of the form

$$
E_{6} \times E_{6} \times E_{6} / H
$$

with $h^{2,1}(Y)=1$ coming from the Künneth component.

What else can we do?

More non-rigid

Are there any subgroups of H of G_{k} such that

$$
\left(E_{k} \times E_{k} \times E_{k}\right) / H
$$

only has nice singularities? Yes! For example, on
$E_{4} \times E_{4} \times E_{4}$, take

$$
H=\left\langle\iota_{4}^{2} \times \iota_{4}^{2} \times \mathrm{id}, \iota_{4}^{2} \times \mathrm{id} \times \iota_{4}^{2}\right\rangle .
$$

Borcea construction

Letting α_{p}, β_{p} be the eigenvalues of $\operatorname{Frob}_{p}(p \neq 2)$ on E_{4}, if $\chi\left(\operatorname{Frob}_{p}\right)=1$, the action of Frobenius on E_{4}^{3} / H is given by

$$
\left(\begin{array}{cccc}
\alpha_{p}^{3} & & & \\
& \alpha_{p}^{2} \beta_{p} & & \\
& & \alpha_{p}^{2} \beta_{p} & \\
& & & \alpha_{p}^{2} \beta_{p}
\end{array}\right.
$$

$$
\alpha_{p} \beta_{p}^{2}
$$

Preliminaries

Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid

If $\chi\left(\mathrm{Frob}_{p}\right)=-1 \ldots$

Trace of Frobenius

Hence, we have
$\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\left\{\begin{array}{cl}\alpha_{p}^{3}+3 p\left(\alpha_{p}+\beta_{p}\right)+\beta_{p}^{3} & \text { if } \chi\left(\operatorname{Frob}_{p}\right)=1, \\ 0 & \text { otherwise } .\end{array}\right.$

Again, the CM condition gives

$$
\operatorname{tr}\left(\rho\left(\operatorname{Frob}_{p}\right)\right)=\alpha_{p}^{3}+3 p\left(\alpha_{p}+\beta_{p}\right)+\beta_{p}^{3}
$$

and so the L-function is (unsurprisingly?)

$$
L\left(\chi_{4}^{3}, s\right) L\left(\chi_{4}, s-1\right)^{3} .
$$

This time, a similar statement holds for E_{3} / E_{6}.

Further questions and remarks

- Is there a relationship between the special values of E_{k} and X_{k} ?
- What is the rank of $\mathrm{CH}^{2}\left(X_{k}\right)_{0}$?
- Do similar (rigid) threefolds exist for each of the weight 4 CM newforms defined over \mathbb{Q} ?

Rigid construction
Galois representation
L-functions
Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

- Can we use this approach with the Borcea-Voisin construction?

Thank you

Thank you to the attendees for coming!
Thank you to the organizers for planning!

Non-rigid
threefolds
L-functions?
Families
L-functions!
Very non-rigid
Further remarks

