Generalized Legendre Curves and Quaternionic Multiplication

Fang-Ting Tu, joint with
Alyson Deines, Jenny Fuselier, Ling Long, Holly Swisher a Women in Numbers 3 project

National Center for Theoretical Sciences, Taiwan
Mini-workshop on Algebraic Varieties, Hypergeometric series, and Modular Forms

${ }_{2} F_{1}$-hypergeometric Function

Let $a, b, c \in \mathbb{R}$. The hypergeometric function ${ }_{2} F_{1}\left[\begin{array}{ll}a & b \\ & c\end{array}\right]$ is defined by

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & b \\
& c
\end{array}\right]=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n},
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$ is the Pochhammer symbol.
Facts. Assume $a, b, c \in \mathbb{Q}$.

- ${ }_{2} F_{1}\left[\begin{array}{cc}a & b \\ & c \\ & c\end{array}\right]$ satisfies a hypergeometric differential equation, whose monodromy group is a triangle group.

${ }_{2} F_{1}$-hypergeometric Function

Let $a, b, c \in \mathbb{R}$. The hypergeometric function ${ }_{2} F_{1}\left[\begin{array}{ll}a & b \\ & c\end{array}\right]$ is defined by

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a & b \\
& c
\end{array}\right]=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n},
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$ is the Pochhammer symbol.
Facts. Assume $a, b, c \in \mathbb{Q}$.

- ${ }_{2} F_{1}\left[\begin{array}{cc}a & b \\ & c \\ & z\end{array}\right]$ satisfies a hypergeometric differential equation, whose monodromy group is a triangle group.
- ${ }_{2} F_{1}\left[\begin{array}{cc}a & b \\ & c\end{array}\right]$ can be viewed as a quotient of periods on some abelian varieties defined over $\overline{\mathbb{Q}}$.

Hypergeometriic Differential Equation

${ }_{2} F_{1}\left[\begin{array}{ll}a & b \\ & c\end{array}\right]\left[\begin{array}{l}\text { satisfies the differential equation } \operatorname{HDE}(a, b, c ; z) \text { : }\end{array}\right.$

$$
z(1-z) F^{\prime \prime}+[(a+b+1) z-c] F^{\prime}+a b F=0
$$

Theorem (Schwarz)

Let f, g be two independent solutions to $\operatorname{HDE}(a, b ; c ; \lambda)$ at a point $z \in \mathfrak{H}$, and let $p=|1-c|, q=|c-a-b|$, and $r=|a-b|$. Then the Schwarz map $D=f / g$ gives a bijection from $\mathfrak{H} \cup \mathbb{R}$ onto a curvilinear triangle with vertices $D(0), D(1), D(\infty)$, and corresponding angles $p \pi, q \pi, r \pi$.

When p, q, r are rational numbers in the lowest form with $0=\frac{1}{\infty}$, let e_{i} be the denominators of p, q, r arranged in the non-decreasing order, the monodromy group is isomorphic to the triangle group $\left(e_{1}, e_{2}, e_{3}\right)$.

Arithmetic triangle groups

- A triangle group $\left(e_{1}, e_{2}, e_{3}\right)$ with $2 \leq e_{1}, e_{2}, e_{3} \leq \infty$ is

$$
\left\langle x, y \mid x^{e_{1}}=y^{e_{2}}=(x y)^{e_{3}}=i d\right\rangle
$$

- A triangle group Γ is called arithmetic if it has a unique embedding to $S L_{2}(\mathbb{R})$ with image commensurable with norm 1 group of an order of an indefinite quaternion algebra.
- 「 acts on the upper half plane. The fundamental half domain $\Gamma \backslash \mathfrak{h}$ gives a tessellation of \mathfrak{h} by congruent triangles with internal angles $\pi / e_{1}, \pi / e_{2}, \pi / e_{3} .\left(1 / e_{1}+1 / e_{2}+1 / e_{3}<1\right)$
- The quotient space is a modular curve when at least one of e_{j} is ∞; otherwise, it is a Shimura curve.
- Arithmetic triangle groups Γ have been classified by Takeuchi.

Arithmetic triangle groups

- A triangle group $\left(e_{1}, e_{2}, e_{3}\right)$ with $2 \leq e_{1}, e_{2}, e_{3} \leq \infty$ is

$$
\left\langle x, y \mid x^{e_{1}}=y^{e_{2}}=(x y)^{e_{3}}=i d\right\rangle .
$$

- A triangle group Γ is called arithmetic if it has a unique embedding to $S L_{2}(\mathbb{R})$ with image commensurable with norm 1 group of an order of an indefinite quaternion algebra.
- Γ acts on the upper half plane. The fundamental half domain $\Gamma \backslash \mathfrak{h}$ gives a tessellation of \mathfrak{h} by congruent triangles with internal angles $\pi / e_{1}, \pi / e_{2}, \pi / e_{3} .\left(1 / e_{1}+1 / e_{2}+1 / e_{3}<1\right)$
otherwise, it is a Shimura curve.
- Arithmetic triangle groups 「 have been classified by Takeuchi.

Arithmetic triangle groups

- A triangle group $\left(e_{1}, e_{2}, e_{3}\right)$ with $2 \leq e_{1}, e_{2}, e_{3} \leq \infty$ is

$$
\left\langle x, y \mid x^{e_{1}}=y^{e_{2}}=(x y)^{e_{3}}=i d\right\rangle .
$$

- A triangle group Γ is called arithmetic if it has a unique embedding to $S L_{2}(\mathbb{R})$ with image commensurable with norm 1 group of an order of an indefinite quaternion algebra.
- Γ acts on the upper half plane. The fundamental half domain $\Gamma \backslash \mathfrak{h}$ gives a tessellation of \mathfrak{h} by congruent triangles with internal angles $\pi / e_{1}, \pi / e_{2}, \pi / e_{3} .\left(1 / e_{1}+1 / e_{2}+1 / e_{3}<1\right)$
- The quotient space is a modular curve when at least one of e_{i} is ∞; otherwise, it is a Shimura curve.
- Arithmetic triangle groups 「 have been classified by Takeuchi.

Arithmetic triangle groups

- A triangle group $\left(e_{1}, e_{2}, e_{3}\right)$ with $2 \leq e_{1}, e_{2}, e_{3} \leq \infty$ is

$$
\left\langle x, y \mid x^{e_{1}}=y^{e_{2}}=(x y)^{e_{3}}=i d\right\rangle .
$$

- A triangle group Γ is called arithmetic if it has a unique embedding to $S L_{2}(\mathbb{R})$ with image commensurable with norm 1 group of an order of an indefinite quaternion algebra.
- Γ acts on the upper half plane. The fundamental half domain $\Gamma \backslash \mathfrak{h}$ gives a tessellation of \mathfrak{h} by congruent triangles with internal angles $\pi / e_{1}, \pi / e_{2}, \pi / e_{3} .\left(1 / e_{1}+1 / e_{2}+1 / e_{3}<1\right)$
- The quotient space is a modular curve when at least one of e_{i} is ∞; otherwise, it is a Shimura curve.
- Arithmetic triangle groups 「 have been classified by Takeuchi.

Arithmetic triangle groups

- A triangle group $\left(e_{1}, e_{2}, e_{3}\right)$ with $2 \leq e_{1}, e_{2}, e_{3} \leq \infty$ is

$$
\left\langle x, y \mid x^{e_{1}}=y^{e_{2}}=(x y)^{e_{3}}=i d\right\rangle .
$$

- A triangle group Γ is called arithmetic if it has a unique embedding to $S L_{2}(\mathbb{R})$ with image commensurable with norm 1 group of an order of an indefinite quaternion algebra.
- Γ acts on the upper half plane. The fundamental half domain $\Gamma \backslash \mathfrak{h}$ gives a tessellation of \mathfrak{h} by congruent triangles with internal angles $\pi / e_{1}, \pi / e_{2}, \pi / e_{3} .\left(1 / e_{1}+1 / e_{2}+1 / e_{3}<1\right)$
- The quotient space is a modular curve when at least one of e_{i} is ∞; otherwise, it is a Shimura curve.
- Arithmetic triangle groups Γ have been classified by Takeuchi.

Examples

- The triangle group corresponding to

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{12} & \frac{5}{12} ; z \\
& 1
\end{array}\right], \quad{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{7}{12} & \frac{11}{12} ; z \\
& \frac{3}{2}
\end{array}\right]
$$

is $(2,3, \infty) \simeq \operatorname{SL}(2, \mathbb{Z})$.

- The triangle group corresponding to

is $(2,3,7)$.

Examples

- The triangle group corresponding to

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{12} & \frac{5}{12} ; z \\
& 1
\end{array}\right], \quad{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{7}{12} & \frac{11}{12} ; z \\
& \frac{3}{2}
\end{array}\right]
$$

is $(2,3, \infty) \simeq \operatorname{SL}(2, \mathbb{Z})$.

- The triangle group corresponding to

$$
{ }_{2} F_{1}\left[\begin{array}{ll}
\frac{1}{5} & \frac{2}{5} \\
& \frac{4}{5}
\end{array}\right], \quad{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{84} & \frac{43}{84} ; z \\
& \frac{2}{3}
\end{array}\right]
$$

is $(2,3,7)$.

$(2,3, \infty)$-tessellation of the hyperbolic plane

$(2,3,7)$-tessellation of the hyperbolic plane

Legendre Family

For $\lambda \neq 0,1$, let

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

be the elliptic curve in Legendre normal form.

- The periods of the Legendre family of elliptic curves are

$$
\Omega\left(E_{\lambda}\right)=\int_{1}^{\infty} \frac{d x}{\sqrt{x(x-1)(x-\lambda)}}
$$

- If $0<\lambda<1$, then

$$
\left.{ }_{2} F_{1}\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
& 1
\end{array}\right]=\lambda\right]=\frac{\Omega\left(E_{\lambda}\right)}{\pi} .
$$

The triangle group $\Gamma=(\infty, \infty, \infty) \simeq \Gamma(2)$.

Legendre Family

For $\lambda \neq 0,1$, let

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda)
$$

be the elliptic curve in Legendre normal form.

- The periods of the Legendre family of elliptic curves are

$$
\Omega\left(E_{\lambda}\right)=\int_{1}^{\infty} \frac{d x}{\sqrt{x(x-1)(x-\lambda)}}
$$

- If $0<\lambda<1$, then

$$
\left.{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
& 1
\end{array}\right]=\lambda\right]=\frac{\Omega\left(E_{\lambda}\right)}{\pi} .
$$

The triangle group $\Gamma=(\infty, \infty, \infty) \simeq \Gamma(2)$.

Generalized Legendre Curves

- Euler's integral representation of the ${ }_{2} F_{1}$ with $c>b>0$

$$
\begin{aligned}
\mathcal{P}(\lambda) & =\int_{0}^{1} x^{b-1}(1-x)^{c-b-1}(1-\lambda x)^{-a} d x \\
& ={ }_{2} F_{1}\left[\begin{array}{c}
a, b \\
c
\end{array}\right] \quad B(b, c-b)
\end{aligned}
$$

where

$$
B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

is the so-called Beta function.

- Following Wolfart , $\mathcal{P}(\lambda)$ can be realized as a period of

where $N=\operatorname{lcd}(a, b, c), i=N(1-b), j=N(1+b-c), k=N a$.

Generalized Legendre Curves

- Euler's integral representation of the ${ }_{2} F_{1}$ with $c>b>0$

$$
\begin{aligned}
\mathcal{P}(\lambda) & =\int_{0}^{1} x^{b-1}(1-x)^{c-b-1}(1-\lambda x)^{-a} d x \\
& ={ }_{2} F_{1}\left[\begin{array}{c}
a, b \\
c
\end{array}\right] \lambda B(b, c-b)
\end{aligned}
$$

where

$$
B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

is the so-called Beta function.

- Following Wolfart, $\mathcal{P}(\lambda)$ can be realized as a period of

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k}
$$

where $N=\operatorname{lcd}(a, b, c), i=N(1-b), j=N(1+b-c), k=N a$.

Let $N \geq 2$. For the curve

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k}
$$

- a period can be chosen as

$$
\mathcal{P}(\lambda)=B\left(1-\frac{i}{N}, 1-\frac{j}{N}\right){ }_{2} F_{1}\left[\begin{array}{c}
\frac{k}{N}, \frac{N-i}{N} \\
\frac{2 N-i-j}{N} ; \lambda
\end{array}\right],
$$

- the corresponding Schwarz triangle is a triangle with angles

Example. For the curve $C_{\lambda}^{[6 ; 4,3,1]}: y^{6}=x^{4}(1-x)^{3}(1-\lambda x)$,

Let $N \geq 2$. For the curve

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k}
$$

- a period can be chosen as

$$
\mathcal{P}(\lambda)=B\left(1-\frac{i}{N}, 1-\frac{j}{N}\right){ }_{2} F_{1}\left[\begin{array}{c}
\frac{k}{N}, \frac{N-i}{N} \\
\frac{2 N-i-j}{N}
\end{array} \lambda\right],
$$

- the corresponding Schwarz triangle is a triangle with angles

$$
\left|\frac{N-i-j}{N}\right| \pi, \quad\left|\frac{N-k-j}{N}\right| \pi, \quad\left|\frac{N-i-k}{N}\right| \pi
$$

Example. For the curve $C_{\lambda}^{[6 ; 4,3,1]}: y^{6}=x^{4}(1-x)^{3}(1-\lambda x)$,

Let $N \geq 2$. For the curve

$$
C_{\lambda}^{[N ; i, j, k]}: y^{N}=x^{i}(1-x)^{j}(1-\lambda x)^{k}
$$

- a period can be chosen as

$$
\mathcal{P}(\lambda)=B\left(1-\frac{i}{N}, 1-\frac{j}{N}\right){ }_{2} F_{1}\left[\begin{array}{c}
\frac{k}{N}, \frac{N-i}{N} \\
\frac{2 N-i-j}{N} ; \lambda
\end{array}\right],
$$

- the corresponding Schwarz triangle is a triangle with angles

$$
\left|\frac{N-i-j}{N}\right| \pi, \quad\left|\frac{N-k-j}{N}\right| \pi, \quad\left|\frac{N-i-k}{N}\right| \pi
$$

Example. For the curve $C_{\lambda}^{[6 ; 4,3,1]}: y^{6}=x^{4}(1-x)^{3}(1-\lambda x)$,

- $\mathcal{P}(\lambda)=B\left(\frac{1}{3}, \frac{1}{2}\right){ }_{2} F_{1}\left[\begin{array}{c}\frac{1}{6}, \frac{1}{3} \\ \frac{5}{6}\end{array} ; \lambda\right]$.
- the corresponding Schwarz triangle is $\Delta\left(\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{6}\right)$; the corresponding triangle group is $\Gamma \simeq(3,6,6)$.

Petkoff-Shiga's result

Fact. The triangle group $\Gamma=(3,6,6)$ can be realized as the norm 1 group of the maximal order \mathcal{O}_{6} of the quaternion algebra B_{6} over \mathbb{Q} of discriminant 6.

Petkoff-Shiga. The Jacobians of these genus 3 Picard curves

decompose into $E^{\prime}(\lambda) \oplus A^{\prime}(\lambda)$ where

Definition. For a simple abelian surface A, we say that A is with quaternionic multiplication (QM) by an order \mathcal{O} if $\operatorname{End}(A) \simeq \mathcal{O}$.

Petkoff-Shiga's result

Fact. The triangle group $\Gamma=(3,6,6)$ can be realized as the norm 1 group of the maximal order \mathcal{O}_{6} of the quaternion algebra B_{6} over \mathbb{Q} of discriminant 6.

Petkoff-Shiga. The Jacobians of these genus 3 Picard curves

$$
C(\lambda): w^{3}=\left(z^{2}-1 / 4\right)\left(z^{2}-\lambda / 4\right)
$$

decompose into $E^{\prime}(\lambda) \oplus A^{\prime}(\lambda)$ where

- $E^{\prime}(\lambda): w^{3}=(z-1 / 4)(z-\lambda / 4)$ is a CM elliptic curve
- $A^{\prime}(\lambda)$ is an abelian surface with QM by \mathcal{O}_{6}.

Definition. For a simple abelian surface A, we say that A is with quaternionic multiplication (QM) by an order \mathcal{O} if $\operatorname{End}(A) \simeq \mathcal{O}$.

Petkoff-Shiga's result

Fact. The triangle group $\Gamma=(3,6,6)$ can be realized as the norm 1 group of the maximal order \mathcal{O}_{6} of the quaternion algebra B_{6} over \mathbb{Q} of discriminant 6.
Petkoff-Shiga. The Jacobians of these genus 3 Picard curves

$$
C(\lambda): w^{3}=\left(z^{2}-1 / 4\right)\left(z^{2}-\lambda / 4\right)
$$

decompose into $E^{\prime}(\lambda) \oplus A^{\prime}(\lambda)$ where

- $E^{\prime}(\lambda): w^{3}=(z-1 / 4)(z-\lambda / 4)$ is a CM elliptic curve
- $A^{\prime}(\lambda)$ is an abelian surface with QM by \mathcal{O}_{6}.

Definition. For a simple abelian surface A, we say that A is with quaternionic multiplication (QM) by an order \mathcal{O} if $\operatorname{End}(A) \simeq \mathcal{O}$.
$C_{\lambda}^{[6 ; 4,3,1]}$ with $\Gamma=(3,6,6)$
Question. Can we construct abelian surfaces with QM by \mathcal{O}_{6} from the family

$$
C_{\lambda}^{[6 ; 4,3,1]}: y^{6}=x^{4}(1-x)^{3}(1-\lambda x) ?
$$

For $\lambda \neq 0,1 \in \overline{\mathbb{Q}}$, the Jacobian variety of the smooth model $X_{\lambda}^{[6 ; 4,3,1]}$ of $C_{\lambda}^{[6 ; 4,3,1]}$ is decomposed as

$$
\operatorname{Jac}\left(X_{\lambda}^{[6 ;<3,1]}\right)=E(\lambda) \oplus A(\lambda),
$$

where

$$
E(\lambda): y^{3}=x^{4}(1-x)^{3}(1-\lambda x)
$$

is a CM elliptic curve.
Proposition. We have

$$
A(\lambda) \sim A^{\prime}(\lambda),
$$

$C_{\lambda}^{[6 ; 4,3,1]}$ with $\Gamma=(3,6,6)$
Question. Can we construct abelian surfaces with QM by \mathcal{O}_{6} from the family

$$
C_{\lambda}^{[6 ; 4,3,1]}: y^{6}=x^{4}(1-x)^{3}(1-\lambda x) ?
$$

For $\lambda \neq 0,1 \in \overline{\mathbb{Q}}$, the Jacobian variety of the smooth model $X_{\lambda}^{[6 ; 4,3,1]}$ of $C_{\lambda}^{[6 ; 4,3,1]}$ is decomposed as

$$
\operatorname{Jac}\left(X_{\lambda}^{[6 ; 4,3,1]}\right)=E(\lambda) \oplus A(\lambda),
$$

where

$$
E(\lambda): y^{3}=x^{4}(1-x)^{3}(1-\lambda x)
$$

is a CM elliptic curve.
Proposition. We have $A(\lambda) \sim A^{\prime}(\lambda)$,
$C_{\lambda}^{[6 ; 4,3,1]}$ with $\Gamma=(3,6,6)$
Question. Can we construct abelian surfaces with QM by \mathcal{O}_{6} from the family

$$
C_{\lambda}^{[6 ; 4,3,1]}: y^{6}=x^{4}(1-x)^{3}(1-\lambda x) ?
$$

For $\lambda \neq 0,1 \in \overline{\mathbb{Q}}$, the Jacobian variety of the smooth model $X_{\lambda}^{[6 ; 4,3,1]}$ of $C_{\lambda}^{[6 ; 4,3,1]}$ is decomposed as

$$
\operatorname{Jac}\left(X_{\lambda}^{[6 ; 4,3,1]}\right)=E(\lambda) \oplus A(\lambda),
$$

where

$$
E(\lambda): y^{3}=x^{4}(1-x)^{3}(1-\lambda x)
$$

is a CM elliptic curve.
Proposition. We have

$$
A(\lambda) \sim A^{\prime}(\lambda),
$$

and thus $A(\lambda)$ is an abelian surface with QM by \mathcal{O}_{6}.

Motivation

Question.

- Can we construct abelian surfaces with QM from the generalized Legendre family $C^{\left[{ }^{[j, i, j, j}, k\right]}$.
- Can we construct abelian surface A from $C^{\left[N_{;}, i, j, k\right]}$ with Endo (A) contains a quaternion algebra?

Assume $N \geq 2,1 \leq i, j, k<N, \lambda \neq 0,1 \in \overline{\mathbb{Q}}$. Let $J_{\lambda}=J_{\lambda}^{[N i i, j, k]}$ be the Jacobian variety of the smooth model $X_{\lambda}^{[N ; i, j, k]}$ of $C_{\lambda}^{[N ; i, j, k]}$. Facts.

- For each $n \mid N, J_{\lambda}^{[n i i, j, k]}$ is a natural quotient of $J_{\lambda}^{\left[N_{i} i, j, k\right]}$
- Let $J_{\lambda}^{\text {new }}$ be the primitive part of J_{λ} so that its intersection with any abelian subvariety isomorphic to $J_{\lambda}^{[n ; i, j, k]}$ for each $n \mid N$ is zero.

Motivation

Question.

- Can we construct abelian surfaces with QM from the generalized Legendre family $C^{[N ; i, j, j, k]}$.
- Can we construct abelian surface A from $C^{[N ;, i, j, k]}$ with $\operatorname{End}_{0}(A)$ contains a quaternion algebra?

Motivation

Question.

- Can we construct abelian surfaces with QM from the generalized Legendre family $C^{[N ; i, j, j, k]}$.
- Can we construct abelian surface A from $C^{[N, i, j, j, k]}$ with $\operatorname{End}_{0}(A)$ contains a quaternion algebra?

Assume $N \geq 2,1 \leq i, j, k<N, \lambda \neq 0,1 \in \overline{\mathbb{Q}}$. Let $J_{\lambda}=J_{\lambda}^{\left[N_{i} i j, k\right]}$ be the Jacobian variety of the smooth model $X_{\lambda}^{\left[N_{i}^{i}, j, k\right]}$ of $C_{\lambda}^{[N ; i, j, k]}$. Facts.

Motivation

Question.

- Can we construct abelian surfaces with QM from the generalized Legendre family $C^{[N ; i, j, j, k]}$.
- Can we construct abelian surface A from $C^{[N, i, j, j, k]}$ with $\operatorname{End}_{0}(A)$ contains a quaternion algebra?

Assume $N \geq 2,1 \leq i, j, k<N, \lambda \neq 0,1 \in \overline{\mathbb{Q}}$. Let $J_{\lambda}=J_{\lambda}^{\left[N_{i} i j, k\right]}$ be the Jacobian variety of the smooth model $X_{\lambda}^{\left[\sum_{i}^{i}, j, k\right]}$ of $C_{\lambda}^{[N ; i, j, k]}$. Facts.

- For each $n \mid N, J_{\lambda}^{[n ; i, j, k]}$ is a natural quotient of $J_{\lambda}^{\left[N_{i}^{i}, j, k\right]}$.
abelian subvariety isomorphic to $J_{\lambda}^{[n ; i, j, k]}$ for each $n \mid N$ is zero.

Motivation

Question.

- Can we construct abelian surfaces with QM from the generalized Legendre family $C^{[N ; i, j, k]}$.
- Can we construct abelian surface A from $C^{[N ;, i, j, k]}$ with $\operatorname{End}_{0}(A)$ contains a quaternion algebra?

Assume $N \geq 2,1 \leq i, j, k<N, \lambda \neq 0,1 \in \overline{\mathbb{Q}}$. Let $J_{\lambda}=J_{\lambda}^{\left[N_{i} i j, k\right]}$ be the Jacobian variety of the smooth model $X_{\lambda}^{\left[\sum_{i}^{i}, j, k\right]}$ of $C_{\lambda}^{[N ; i, j, k]}$. Facts.

- For each $n \mid N, J_{\lambda}^{[n ; i, j, k]}$ is a natural quotient of $J_{\lambda}^{\left[N_{i}^{i}, j, k\right]}$.
- Let $J_{\lambda}^{\text {new }}$ be the primitive part of J_{λ} so that its intersection with any abelian subvariety isomorphic to $J_{\lambda}^{[n ; i, j, k]}$ for each $n \mid N$ is zero.

Question:

- Given a hypergeometric differential equation, when does $J_{\lambda}^{\text {new }}$ contain a subvariety A such that of $\mathrm{End}_{0}(A)$ contains a quaternion algebra?
- If the monodromy group of the hypergeometric differential equation is an arithmetic triangle group Γ, when does $E^{2} d_{0}(A)$ contains the corresponding quaternion algebra H_{Γ} ?

Question:

- Given a hypergeometric differential equation, when does $J_{\lambda}^{\text {new }}$ contain a subvariety A such that of $E n d_{0}(A)$ contains a quaternion algebra?
- If the monodromy group of the hypergeometric differential equation is an arithmetic triangle group Γ, when does $\operatorname{End}_{0}(A)$ contains the corresponding quaternion algebra H_{Γ} ?

Assumption. Assume $N \geq 2,1 \leq i, j, k<N, \operatorname{gcd}(i, j, k, N)=1$, $\lambda \neq 0,1 \in \overline{\mathbb{Q}}$. Furthermore, suppose $N \nmid i+j+k$.

Theorem (Deines, Long, Fuselier, Swisher, T.)
Let $N=3,4,6$. Then for each $\lambda \in \overline{\mathbb{Q}}$, the endomorphism algebra of $J_{\lambda}^{\text {new }}$ contains a quaternion algebra H over \mathbb{Q} if and only if

$$
B\left(\frac{N-i}{N}, \frac{N-j}{N}\right) / B\left(\frac{k}{N}, \frac{2 N-i-j-k}{N}\right) \in \overline{\mathbb{Q}},
$$

where $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$ is the Beta function, and $\Gamma(\cdot)$ is the Gamma function.

Remark.

Assumption. Assume $N \geq 2,1 \leq i, j, k<N, \operatorname{gcd}(i, j, k, N)=1$, $\lambda \neq 0,1 \in \overline{\mathbb{Q}}$. Furthermore, suppose $N \nmid i+j+k$.

Theorem (Deines, Long, Fuselier, Swisher, T.)
Let $N=3,4,6$. Then for each $\lambda \in \overline{\mathbb{Q}}$, the endomorphism algebra of $J_{\lambda}^{\text {new }}$ contains a quaternion algebra H over \mathbb{Q} if and only if

$$
B\left(\frac{N-i}{N}, \frac{N-j}{N}\right) / B\left(\frac{k}{N}, \frac{2 N-i-j-k}{N}\right) \in \overline{\mathbb{Q}},
$$

where $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$ is the Beta function, and $\Gamma(\cdot)$ is the Gamma function.

Remark.

- $H=H_{\Gamma}$.

Assumption. Assume $N \geq 2,1 \leq i, j, k<N, \operatorname{gcd}(i, j, k, N)=1$, $\lambda \neq 0,1 \in \overline{\mathbb{Q}}$. Furthermore, suppose $N \nmid i+j+k$.

Theorem (Deines, Long, Fuselier, Swisher, T.)
Let $N=3,4,6$. Then for each $\lambda \in \overline{\mathbb{Q}}$, the endomorphism algebra of $J_{\lambda}^{\text {new }}$ contains a quaternion algebra H over \mathbb{Q} if and only if

$$
B\left(\frac{N-i}{N}, \frac{N-j}{N}\right) / B\left(\frac{k}{N}, \frac{2 N-i-j-k}{N}\right) \in \overline{\mathbb{Q}},
$$

where $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$ is the Beta function, and $\Gamma(\cdot)$ is the Gamma function.

Remark.

- $H=H_{\Gamma}$.
- Our methods apply more generally. For general $N, H=H_{\Gamma}$?

Holomorphic Differential 1-forms on $X_{\lambda}^{\left[N_{i} / j, j, k\right]}$

Let $X_{\lambda}=X_{\lambda}^{[N ; i, j, k]}$ be the smooth model of $C_{\lambda}^{[N ; i, j, k]}$. A basis of $H^{0}\left(X_{\lambda}, \Omega^{1}\right)$ is given by

$$
\omega=\frac{x^{b_{0}}(1-x)^{b_{1}}(1-\lambda x)^{b_{2}} d x}{y^{n}}, \quad 0 \leq n \leq N-1, b_{i} \in \mathbb{Z},
$$

satisfying the following conditions

$$
\begin{aligned}
b_{0} & \geq \frac{n i+\operatorname{gcd}(N, i)}{N}-1 \\
b_{1} & \geq \frac{n j+\operatorname{gcd}(N, j)}{N}-1 \\
b_{2} & \geq \frac{n k+\operatorname{gcd}(N, k)}{N}-1 \\
b_{0}+b_{1}+b_{2} & \leq \frac{n(i+j+k)-\operatorname{gcd}(N, i+j+k)}{N}-1 .
\end{aligned}
$$

Examples

- For $C_{\lambda}^{[3 ; 1,2,1]}(\Gamma=(3, \infty, \infty))$, a basis for the space of holomorphic 1 -forms is $\frac{d x}{y}, \quad \frac{d x}{y^{2}}$.
- For $C_{\lambda}^{[4 ; 1,1,1]}(\Gamma=(2,2,2))$, the space of holomorphic 1 -forms are spanned by

and

Examples

- For $C_{\lambda}^{[3 ; 1,2,1]}(\Gamma=(3, \infty, \infty))$, a basis for the space of holomorphic 1 -forms is

$$
\frac{d x}{y}, \quad \frac{d x}{y^{2}}
$$

- For $C_{\lambda}^{[4 ; 1,1,1]}(\Gamma=(2,2,2))$, the space of holomorphic 1 -forms are spanned by

$$
\frac{d x}{y^{2}}, \frac{d x}{y^{3}}, \frac{x d x}{y^{3}}
$$

and

$$
\frac{(1-x) d x}{y^{3}}, \frac{(1-\lambda x) d x}{y^{3}}
$$

Let $\zeta_{N}=e^{2 \pi i / N}$. For each $0 \leq n<N$, we let V_{n} denote the isotypical component of $H^{0}\left(X_{\lambda}, \Omega^{1}\right)$ associated to the character $\chi_{n}: \zeta_{N} \mapsto \zeta_{N}^{n}$. Then

$$
H^{0}\left(X(\lambda), \Omega^{1}\right)=\bigoplus_{n=0}^{N-1} V_{n}
$$

If $\operatorname{gcd}(n, N)=1$,

where $\{x\}=x-\lfloor x\rfloor$
denotes the fractional part of x.

- $\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}=2$.

The subspace

Let $\zeta_{N}=e^{2 \pi i / N}$. For each $0 \leq n<N$, we let V_{n} denote the isotypical component of $H^{0}\left(X_{\lambda}, \Omega^{1}\right)$ associated to the character $\chi_{n}: \zeta_{N} \mapsto \zeta_{N}^{n}$. Then

$$
H^{0}\left(X(\lambda), \Omega^{1}\right)=\bigoplus_{n=0}^{N-1} V_{n}
$$

If $\operatorname{gcd}(n, N)=1$,

- $\operatorname{dim} V_{n}=\left\{\frac{n i}{N}\right\}+\left\{\frac{n j}{N}\right\}+\left\{\frac{n k}{N}\right\}-\left\{\frac{n(i+j+k)}{N}\right\}$, where $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of x.

The subspace

Let $\zeta_{N}=e^{2 \pi i / N}$. For each $0 \leq n<N$, we let V_{n} denote the isotypical component of $H^{0}\left(X_{\lambda}, \Omega^{1}\right)$ associated to the character $\chi_{n}: \zeta_{N} \mapsto \zeta_{N}^{n}$. Then

$$
H^{0}\left(X(\lambda), \Omega^{1}\right)=\bigoplus_{n=0}^{N-1} V_{n}
$$

If $\operatorname{gcd}(n, N)=1$,

- $\operatorname{dim} V_{n}=\left\{\frac{n i}{N}\right\}+\left\{\frac{n j}{N}\right\}+\left\{\frac{n k}{N}\right\}-\left\{\frac{n(i+j+k)}{N}\right\}$, where $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of x.
- $\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}=2$.

The subspace

is of dimension $\varphi(N)$.

Let $\zeta_{N}=e^{2 \pi i / N}$. For each $0 \leq n<N$, we let V_{n} denote the isotypical component of $H^{0}\left(X_{\lambda}, \Omega^{1}\right)$ associated to the character $\chi_{n}: \zeta_{N} \mapsto \zeta_{N}^{n}$. Then

$$
H^{0}\left(X(\lambda), \Omega^{1}\right)=\bigoplus_{n=0}^{N-1} V_{n}
$$

If $\operatorname{gcd}(n, N)=1$,

- $\operatorname{dim} V_{n}=\left\{\frac{n i}{N}\right\}+\left\{\frac{n j}{N}\right\}+\left\{\frac{n k}{N}\right\}-\left\{\frac{n(i+j+k)}{N}\right\}$, where $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of x.
- $\operatorname{dim} V_{n}+\operatorname{dim} V_{N-n}=2$.

The subspace

$$
H^{0}\left(X_{\lambda}, \Omega^{1}\right)^{\text {new }}=\bigoplus_{\operatorname{gcd}(n, N)=1} V_{n}
$$

is of dimension $\varphi(N)$.

The abelian variety $J_{\lambda}^{\text {new }}$

Assume $N<i+j+k<2 N$. For $\operatorname{gcd}(N, n)=1$, we have

$$
V_{n}=\mathbb{C}\left\langle d x / y^{n}\right\rangle
$$

Wolfart. The primitive Jacobian subvariety $J_{\lambda}^{\text {new }}$ is isogenious to $\mathbb{C}^{\phi(N)} / \Lambda(\lambda)$, where
by the $2 \phi(N)$ columns

Remark. These periods are all of first kind. When $N=3,4,6$, the abelian variety $J_{\lambda}^{\text {new }}$ is 2-dimensional.

The abelian variety $J_{\lambda}^{\text {new }}$

Assume $N<i+j+k<2 N$. For $\operatorname{gcd}(N, n)=1$, we have

$$
V_{n}=\mathbb{C}\left\langle d x / y^{n}\right\rangle
$$

Wolfart. The primitive Jacobian subvariety $J_{\lambda}^{\text {new }}$ is isogenious to $\mathbb{C}^{\phi(N)} / \Lambda(\lambda)$, where $\Lambda(\lambda)$ can be identified with the \mathbb{Z}-module generated by the $2 \phi(N)$ columns

$$
\left(\sigma_{n}\left(\zeta_{N}^{i}\right) \int_{0}^{1} \omega_{n}\right)_{i}, \quad\left(\sigma_{n}\left(\zeta_{N}^{i}\right) \int_{1 / \lambda}^{\infty} \omega_{n}\right)_{i}, \quad(n, N)=1, i=0 . . \phi(N)-1
$$

and $\sigma_{n}: \zeta_{N} \mapsto \zeta_{N}^{n}, \omega_{n}=d x / y^{n}$.
Remark. These periods are all of first kind. When $N=3,4,6$, the abelian variety $J_{\lambda}^{\text {new }}$ is 2-dimensional.

The abelian variety $J_{\lambda}^{\text {new }}$

Assume $N<i+j+k<2 N$. For $\operatorname{gcd}(N, n)=1$, we have

$$
V_{n}=\mathbb{C}\left\langle d x / y^{n}\right\rangle
$$

Wolfart. The primitive Jacobian subvariety $J_{\lambda}^{\text {new }}$ is isogenious to $\mathbb{C}^{\phi(N)} / \Lambda(\lambda)$, where $\Lambda(\lambda)$ can be identified with the \mathbb{Z}-module generated by the $2 \phi(N)$ columns

$$
\left(\sigma_{n}\left(\zeta_{N}^{i}\right) \int_{0}^{1} \omega_{n}\right)_{i}, \quad\left(\sigma_{n}\left(\zeta_{N}^{i}\right) \int_{1 / \lambda}^{\infty} \omega_{n}\right)_{i}, \quad(n, N)=1, i=0 . . \phi(N)-1
$$

and $\sigma_{n}: \zeta_{N} \mapsto \zeta_{N}^{n}, \omega_{n}=d x / y^{n}$.
Remark. These periods are all of first kind. When $N=3,4,6$, the abelian variety $J_{\lambda}^{\text {new }}$ is 2-dimensional.

$\phi(N)=2$

All the periods are:

$$
\begin{aligned}
& \int_{0}^{1} \omega_{1}=B\left(\frac{N-i}{N}, \frac{N-j}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{k}{N} & \frac{N-i}{N} \\
& \frac{2 N-i-j}{N} ; \lambda
\end{array}\right], \\
& \int_{\frac{1}{\lambda}}^{\infty} \omega_{1}=(-1)^{\frac{k+j}{N}} \lambda^{\frac{i+j-N}{N}} B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right){ }_{2} F_{1}\left[\frac{j}{N} \frac{\frac{i+j+k-N}{N}}{\frac{i+j}{N}} ; \lambda\right] \\
& =\alpha(\lambda) B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{N-k}{N} & \frac{i}{N} \\
& \frac{i+j}{N}
\end{array}\right] \lambda,
\end{aligned}
$$

$\phi(N)=2$

All the periods are:

$$
\begin{aligned}
& \int_{0}^{1} \omega_{1}=B\left(\frac{N-i}{N}, \frac{N-j}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{k}{N} & \frac{N-i}{N} \\
\frac{2 N-i-j}{N} ; \lambda
\end{array}\right] \\
& \int_{\frac{1}{\lambda}}^{\infty} \omega_{1}=(-1)^{\frac{k+j}{N}} \lambda^{\frac{i+j-N}{N} B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right){ }_{2} F_{1}\left[\begin{array}{ll}
\frac{j}{N} & \frac{i+j+k-N}{N} \\
\frac{i+j}{N}
\end{array} \lambda\right]} \\
& \quad=\alpha(\lambda) B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{N-k}{N} & \frac{i}{N} ; \lambda \\
\frac{i+j}{N}
\end{array}\right]
\end{aligned}
$$

and

$$
\left.\begin{array}{l}
\int_{0}^{1} \omega_{N-1}=B\left(\frac{i}{N}, \frac{j}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{N-k}{N} & \frac{i}{N} \\
\frac{i+j}{N}
\end{array}\right] \\
\int_{\frac{1}{\lambda}}^{\infty} \omega_{N-1}=\alpha(\lambda)^{-1} B\left(\frac{2 N-i-j-k}{N}, \frac{k}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{k}{N} & \frac{N-i}{N} \\
\frac{2 N-i-j}{N}
\end{array}\right]
\end{array}\right],
$$

$\phi(N)=2$

All the periods are:

$$
\begin{aligned}
& \int_{0}^{1} \omega_{1}=B\left(\frac{N-i}{N}, \frac{N-j}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{k}{N} & \frac{N-i}{N} \\
\frac{2 N-i-j}{N}
\end{array}\right] \\
& \int_{\frac{1}{\lambda}}^{\infty} \omega_{1}
\end{aligned}=(-1)^{\frac{k+j}{N}} \lambda^{\frac{i+j-N}{N} B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right){ }_{2} F_{1}\left[\begin{array}{ll}
\frac{j}{N} & \frac{i+j+k-N}{N} \\
\frac{i+j}{N}
\end{array} \lambda\right]} \begin{aligned}
& =\alpha(\lambda) B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right)_{2} F_{1}\left[\begin{array}{cc}
\frac{N-k}{N} & \frac{i}{N} ; \\
& \frac{i+j}{N}
\end{array}\right]
\end{aligned}
$$

and

$$
\left.\begin{array}{l}
\int_{0}^{1} \omega_{N-1}=B\left(\frac{i}{N}, \frac{j}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{N-k}{N} & \frac{i}{N} \\
\frac{i+j}{N}
\end{array}\right] \\
\int_{\frac{1}{\lambda}}^{\infty} \omega_{N-1}=\alpha(\lambda)^{-1} B\left(\frac{2 N-i-j-k}{N}, \frac{k}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{k}{N} & \frac{N-i}{N} \\
\frac{2 N-i-j}{N}
\end{array}\right]
\end{array}\right],
$$

$\phi(N)=2$

$$
\begin{aligned}
& \tau_{1}=\int_{0}^{1} \omega_{1}=B\left(\frac{N-i}{N}, \frac{N-j}{N}\right){ }_{2} F_{1}\left[\frac{k}{N} \frac{\frac{N-i}{N}}{\left.\frac{2 N-i-j}{N} ; \lambda\right]}\right] \\
& \tau_{N-1}=\int_{0}^{1} \omega_{N-1}=B\left(\frac{i}{N}, \frac{j}{N}\right){ }_{2} F_{1}\left[\frac{N-k}{N} \frac{i}{N} ; \frac{i+i}{N} ; \lambda,\right. \\
& \tau_{1}^{\prime}=\int_{\frac{1}{\lambda}}^{\infty} \omega_{1}=\tau_{N-1} \alpha(\lambda) B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right) / B\left(\frac{i}{N}, \frac{j}{N}\right), \\
& \tau_{N-1}^{\prime}=\int_{\frac{1}{\lambda}}^{\infty} \omega_{N-1}=\tau_{1} \alpha(\lambda)^{-1} B\left(\frac{2 N-i-j-k}{N}, \frac{k}{N}\right) / B\left(\frac{N-i}{N}, \frac{N-j}{N}\right) . \\
& \quad \gamma=\frac{\tau_{1}^{\prime} \tau_{N-1}^{\prime}}{\tau_{1} \tau_{N-1}}=\frac{\left(\sin \frac{i}{N} \pi\right)\left(\sin \frac{j}{N} \pi\right)}{\left(\sin \frac{k}{N} \pi\right)\left(\sin \frac{2 N-i-j-k}{N} \pi\right)} \in \mathbb{Q}\left(\zeta_{N}+\zeta_{N}^{-1}\right) .
\end{aligned}
$$

Example: $X_{\lambda}^{[6 ; 4,3,1]}$
For the curve $[6 ; 4,3,1]$, the lattice Λ is generated by

$$
\binom{\tau_{1}}{\tau_{2}},\binom{\zeta_{6} \tau_{1}}{\zeta_{6}^{-1} \tau_{2}},\binom{\beta_{1} \tau_{2}}{\beta_{2} \tau_{1}},\binom{\zeta_{6} \beta_{1} \tau_{2}}{\zeta_{6}^{-1} \beta_{2} \tau_{1}},
$$

where

$$
\left.\begin{array}{l}
\tau_{1}=B(1 / 3,1 / 2){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{6} & \frac{1}{3} \\
& \frac{5}{6}
\end{array}\right], \quad \tau_{2}=B(2 / 3,1 / 2)_{2} F_{1}\left[\begin{array}{cc}
\frac{5}{6} & \frac{2}{3} \\
\frac{7}{6}
\end{array}\right] \\
\frac{7}{6}
\end{array}\right],
$$

The endomorphism algebra End ($\mathrm{J}_{\lambda}^{\text {new }}$) contains

Example: $X_{\lambda}^{[6 ; 4,3,1]}$
For the curve $[6 ; 4,3,1]$, the lattice Λ is generated by

$$
\binom{\tau_{1}}{\tau_{2}},\binom{\zeta_{6} \tau_{1}}{\zeta_{6}^{-1} \tau_{2}},\binom{\beta_{1} \tau_{2}}{\beta_{2} \tau_{1}},\binom{\zeta_{6} \beta_{1} \tau_{2}}{\zeta_{6}^{-1} \beta_{2} \tau_{1}},
$$

where

$$
\left.\begin{array}{l}
\tau_{1}=B(1 / 3,1 / 2){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{6} & \frac{1}{3} \\
& \frac{5}{6}
\end{array}\right], \quad \tau_{2}=B(2 / 3,1 / 2)_{2} F_{1}\left[\begin{array}{cc}
\frac{5}{6} & \frac{2}{3} \\
\frac{7}{6}
\end{array}\right] \\
\frac{7}{6}
\end{array}\right],
$$

The endomorphism algebra End $\left(J_{\lambda}^{\text {new }}\right)$ contains

$$
\begin{gathered}
E=\left(\begin{array}{cc}
\zeta_{6} & 0 \\
0 & \zeta_{6}^{-1}
\end{array}\right), \quad J=\left(\begin{array}{cc}
0 & \beta_{1} \\
\beta_{2} & 0
\end{array}\right), \\
I=2 E-\left(\zeta_{6}+\zeta_{6}^{-1}\right)=\left(\begin{array}{cc}
\sqrt{-3} & 0 \\
0 & -\sqrt{-3}
\end{array}\right) .
\end{gathered}
$$

Example: $X_{\lambda}^{[6 ; 4,3,1]}$

Note that $I^{2}=-3, J^{2}=2$, and $I J=-J I$. Thus End $\left(J_{\lambda}^{\text {new }}\right)$ contains the quaternion algebra

$$
\left(\frac{-3,2}{\mathbb{Q}}\right)=\mathbb{Q}+\mathbb{Q} I+\mathbb{Q} J+\mathbb{Q} E J, \quad I^{2}=-3, J^{2}=2, I J=-J I,
$$

which is isomorphic to $H_{(3,6,6)}$.

End $\left(J_{\lambda}^{\text {new }}\right)$ with $\phi(N)=2$

When $N=3,4,6$, a period matrix of $J_{\lambda}^{\text {new }}$ is

$$
\left(\begin{array}{cccc}
\tau_{1} & \zeta_{N} \tau_{1} & \alpha(\lambda) \beta \tau_{N-1} & \zeta_{N} \alpha(\lambda) \beta \tau_{N-1} \\
\tau_{N-1} & \zeta_{N}^{-1} \tau_{N-1} & \gamma \tau_{1} / \beta \alpha(\lambda) & \zeta_{N}^{-1} \gamma \tau_{1} / \beta \alpha(\lambda)
\end{array}\right),
$$

where

$$
\beta=B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right) / B\left(\frac{i}{N}, \frac{j}{N}\right),
$$

and

$$
\gamma / \beta=B\left(\frac{N-i}{N}, \frac{N-j}{N}\right) / B\left(\frac{k}{N}, \frac{2 N-i-j-k}{N}\right) .
$$

If $\beta \in \overline{\mathbb{Q}}(\gamma / \beta \in \overline{\mathbb{Q}})$, then $\operatorname{End}_{0}\left(J_{\lambda}^{\text {new }}\right)$ contains the endomorphisms

$$
E=\left(\begin{array}{cc}
\zeta_{N} & 0 \\
0 & \zeta_{N}^{-1}
\end{array}\right), \quad J=\left(\begin{array}{cc}
0 & \alpha(\lambda) \beta \\
\frac{\gamma}{\alpha(\lambda) \beta} & 0
\end{array}\right) .
$$

$\operatorname{End}\left(J_{\lambda}^{\text {new }}\right)$ with $\phi(N)=2$

When $N=3,4,6$, if

$$
\beta=B\left(\frac{N-i}{N}, \frac{N-j}{N}\right) / B\left(\frac{k}{N}, \frac{2 N-i-j-k}{N}\right) \in \overline{\mathbb{Q}}
$$

the algebra $\operatorname{End}_{0}\left(J_{\lambda}^{\text {new }}\right)$ contains the quaternion algebra defined over \mathbb{Q} generated by
$I=2 E-\left(\zeta_{N}+\zeta_{N}^{-1}\right)=\left(\begin{array}{cc}\zeta_{N}-\zeta_{N}^{-1} & 0 \\ 0 & \zeta_{N}^{-1}-\zeta_{N}\end{array}\right), \quad J=\left(\begin{array}{cc}0 & \alpha(\lambda) \beta \\ \frac{\gamma}{\alpha(\lambda) \beta} & 0\end{array}\right)$
which satisfy

$$
I^{2}=\left(\zeta_{N}-\zeta_{N}^{-1}\right)^{2}, J^{2}=\gamma \in \mathbb{Q}, \quad I J+J I=0
$$

End $\left(J_{\lambda}^{\text {new }}\right)$ with $\phi(N)=2$

Claim. When $N=3,4,6$, if $\operatorname{End}_{0}\left(J_{\lambda}^{\text {new }}\right)$ contains a quaternion algebra over \mathbb{Q}, then

$$
\beta=B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right) / B\left(\frac{i}{N}, \frac{j}{N}\right) \in \overline{\mathbb{Q}} .
$$

Idea.

$$
{ }_{2} F_{1} \text { - Gaussian hypergeometric function }
$$

Galois representations

"Computing" the Galois representation of $\left.C_{\lambda}^{[N ; ~} ;, j, k\right]$ via Gaussian hypergeometric functions.

$\operatorname{End}\left(J_{\lambda}^{\text {new }}\right)$ with $\phi(N)=2$

Claim. When $N=3,4,6$, if $\operatorname{End}_{0}\left(J_{\lambda}^{\text {new }}\right)$ contains a quaternion algebra over \mathbb{Q}, then

$$
\beta=B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right) / B\left(\frac{i}{N}, \frac{j}{N}\right) \in \overline{\mathbb{Q}} .
$$

Idea.

$$
{ }_{2} F_{1} \text { - Gaussian hypergeometric function }
$$

$$
L_{p}\left(J_{\lambda}^{n e w}, s\right)
$$

Galois representations
"Computing" the Galois representation of $\left.C_{\lambda}^{[N ; ~} ;, j, k\right]$ via Gaussian hypergeometric functions.

$\operatorname{End}\left(J_{\lambda}^{\text {new }}\right)$ with $\phi(N)=2$

Claim. When $N=3,4,6$, if $\operatorname{End}_{0}\left(J_{\lambda}^{\text {new }}\right)$ contains a quaternion algebra over \mathbb{Q}, then

$$
\beta=B\left(\frac{i+j+k-N}{N}, \frac{N-k}{N}\right) / B\left(\frac{i}{N}, \frac{j}{N}\right) \in \overline{\mathbb{Q}} .
$$

Idea.

$$
{ }_{2} F_{1} \text { - Gaussian hypergeometric function }
$$

$$
L_{p}\left(J_{\lambda}^{\downarrow \text { new }}, s\right)
$$

Galois representations
"Computing" the Galois representation of $C_{\lambda}^{\left[N_{i} ; i, j, k\right]}$ via Gaussian hypergeometric functions.

Hypergeometric functions over \mathbb{F}_{q}

Let p be a prime, and $q=p^{s}$.
Definition.

- Let \mathbb{F}_{q}^{\times}denote the group of multiplicative characters on \mathbb{F}_{q}^{\times}.
- Extend $\chi \in \widehat{\mathbb{F}_{q}^{\times}}$to \mathbb{F}_{q} by setting $\chi(0)=0$.
- (Greene, 1984) Let $\lambda \in \mathbb{F}_{q}$, and $A, B, C \in \mathbb{F}_{q}^{\times}$. Define

where ε is the trivial character.

Hypergeometric functions over \mathbb{F}_{q}

Let p be a prime, and $q=p^{s}$.
Definition.

- Let $\widetilde{\mathbb{F}_{q}^{\times}}$denote the group of multiplicative characters on \mathbb{F}_{q}^{\times}.
- Extend $\chi \in \widehat{\mathbb{F}_{q}^{x}}$ to \mathbb{F}_{q} by setting $\chi(0)=0$.
- (Greene, 1984) Let $\lambda \in \mathbb{F}_{q}$, and $A, B, C \in \widehat{\mathbb{F}_{q}^{\times}}$. Define

$$
{ }_{2} F_{1}\left(\begin{array}{ll}
A & B \\
& C
\end{array} \lambda\right)_{q}=\varepsilon(\lambda) \frac{B C(-1)}{q} \sum_{x \in \mathbb{F}_{q}} B(x) \bar{B} C(1-x) \bar{A}(1-\lambda x),
$$

where ε is the trivial character.

Jacobi sums and Beta functions

If $\chi \in \widehat{\mathbb{F}_{q}^{\times}}$is of order N, we have the following analogy

$\frac{i}{N}$	\Longleftrightarrow	χ^{i}
$\Gamma\left(\frac{i}{N}\right)$	\Longleftrightarrow	$g\left(\chi^{i}\right)$
$B\left(\frac{i}{N}, \frac{j}{N}\right)$	\Longleftrightarrow	$J\left(\chi^{i}, \chi^{j}\right)$

Jacobi sums and Beta functions

If $\chi \in \widehat{\mathbb{F}_{q}^{\times}}$is of order N, we have the following analogy

$$
\begin{aligned}
& \begin{array}{rlc}
\frac{i}{N} & \Longleftrightarrow & \chi^{i} \\
\Gamma\left(\frac{i}{N}\right) & \Longleftrightarrow & g\left(\chi^{i}\right)
\end{array} \\
& B\left(\frac{i}{N}, \frac{j}{N}\right) \Longleftrightarrow J\left(\chi^{i}, \chi^{j}\right) \\
& \begin{aligned}
{ }_{2}{ }_{2}^{[N ; i, j, k]} F_{1}\left[\begin{array}{c}
{ }_{\lambda}{ }^{\frac{k}{N}} \frac{\widetilde{C}_{\lambda}^{[N ; i, j, k]} / \mathbb{F}_{q}}{N} \\
\\
\\
\frac{2 N-i-j}{N} ; \lambda
\end{array}\right] & \Longleftrightarrow
\end{aligned} \\
& { }_{2} F_{1}\left[\begin{array}{cc}
\frac{N-k}{N} & \frac{i}{N} \\
& \frac{i+j}{N} ; \lambda
\end{array}\right] \quad{ }_{2} F_{1}\left(\begin{array}{cc}
\chi^{k} & \bar{\chi}^{i} \\
& \bar{\chi}^{i+j} ; \lambda
\end{array}\right)_{q}
\end{aligned}
$$

Counting points on generalized Legendre curves

Theorem.
Let $p>3$ be prime and $q=p^{s} \equiv 1(\bmod N)$, and let i, j, k be natural numbers with $1 \leq i, j, k<N$. Further, let $\xi \in \mathbb{F}_{q}^{\times}$be a character of order N. Then for $\lambda \in \mathbb{F}_{q} \backslash\{0,1\}$,

$$
\begin{aligned}
& \# X_{\lambda}^{[N ; i, j, k]}\left(\mathbb{F}_{q}\right)=1+q+q \sum_{m=1}^{N-1} \xi^{m j}(-1)_{2} F_{1}\left(\begin{array}{cc}
\xi^{-k m} & \xi^{i m} \\
\xi^{m(i+j)} & ; \lambda
\end{array}\right)_{q} \\
&+n_{0}+n_{1}+n_{\frac{1}{\lambda}}+n_{\infty}-4
\end{aligned}
$$

where $n_{0}, n_{1}, n_{\frac{1}{\lambda}}, n_{\infty}$ are the numbers of points on $X_{\lambda}^{[N ; i, j, k]}$ from resolving the singularities $0,1, \frac{1}{\lambda}$, ∞ respectively of $C_{\lambda}^{[N ; i, j, k]}$

Galois Representations

Suppose $C_{\lambda}^{\left[N_{i}^{i}, j, k\right]}$ has genus g. One can construct a compatible family of degree-2g representations

$$
\rho_{\ell}(\lambda): G_{\mathbb{Q}}:=G a l(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G L_{2 g}\left(\overline{\mathbb{Q}}_{\ell}\right)
$$

via the Tate module of the Jacobian $J_{\lambda}^{[N ; i, j, k]}$ of $X_{\lambda}^{[N ; i, j, k]}$.
Let $\zeta \in \mu_{N}$, the multiplicative group of N th roots of unity. The map $A_{\zeta}:(x, y) \mapsto\left(x, \zeta^{-1} y\right)$ induces an action on the ρ_{ℓ}. Consequently,

$$
\left.\rho_{\ell}(\lambda)\right|_{\mathrm{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left(\zeta_{N}\right)\right)}=\bigoplus_{n=1}^{N-1} \sigma_{n}(\lambda)
$$

where $\sigma_{n}(\lambda)$ is 2 -dimensional when $(n, N)=1$.
Let $\rho^{\text {new }}$ be the subrepresentation of ρ that corresponds to $J_{\lambda}^{\text {new }}$.

4-dimensional Galois representations with QM

Proposition.

$$
-\operatorname{Tr} \sigma_{m}\left(\operatorname{Frob}_{q}\right) \quad \text { and } \quad{ }_{2} F_{1}\binom{\xi^{-k m}}{\xi^{m(i+j)} ; \lambda}_{q}^{\xi^{i m}} \cdot \xi^{m j}(-1) q
$$

agree up to different embeddings of $\mathbb{Q}\left(\zeta_{N}\right)$ in \mathbb{C}.
Theorem
Let $\varphi(N)=2$. If $\operatorname{End}_{0}\left(J_{\lambda}^{\text {new }}\right)$ contains a quaternion algebra, then the corresponding representations σ_{1} and σ_{N-1} of $G_{\mathbb{Q}\left(\zeta_{N}\right)}$, which are assumed to be absolutely irreducible, differ by a character.

Criterion

Proposition. If $A, B, C \in \widehat{\mathbb{F}_{q}^{\times}} A, B \neq \varepsilon, A, B \neq C, \varepsilon$, and $\lambda \in \mathbb{F}_{q} \backslash\{0,1\}$,

$$
\begin{aligned}
& J(A, \bar{A} C)_{2} F_{1}\left(\begin{array}{cc}
A & B \\
& C
\end{array}\right)_{q}= \\
& \\
& \\
& \\
& A B(-1) \bar{C}(-\lambda) C \overline{A B}(1-\lambda) J(B, \bar{B} C)_{2} F_{1}\left(\begin{array}{ll}
\bar{A} & \bar{B} \\
& \bar{C} ; \lambda
\end{array}\right)_{q}
\end{aligned}
$$

Theorem. For the curve $C^{[N ; i, j, k]}$ with $\phi(N)=2$, if End $\left(J^{\text {new }}\right)$ contains a quaternion algebra, then, as $A=\eta_{N}^{-k}, B=\eta_{N}^{i}, C=\zeta_{n}^{(i+j)}$,

$$
{ }_{2} F_{1}\left(\begin{array}{cc}
\eta_{N}^{-k} & \eta_{N}^{i} \\
& \eta_{N}^{(i+j)} ; \lambda
\end{array}\right)_{q}, \quad{ }_{2} F_{1}\left(\begin{array}{cc}
\eta_{N}^{k} & \eta_{N}^{-i} \\
& \eta_{N}^{-(i+j)} ; \lambda
\end{array}\right)_{q}
$$

differ by a character. Equivalently,

$$
F\left(\eta_{N}\right):=J\left(\eta_{N}^{i}, \eta_{N}^{j}\right) / J\left(\eta_{N}^{-k}, \eta_{N}^{i+j+k}\right)
$$

has to be a character of N ($2 N$ when N is odd).

$$
\begin{aligned}
& g(\chi) \overline{g(\chi)}=p, \\
& \Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (z \pi)} .
\end{aligned}
$$

Hasse-Davenport Relation.

$$
\begin{aligned}
& g\left(\chi^{\ell a}\right)=(-1)^{\ell} \chi\left(\ell^{\ell a-N / 2}\right) \chi\left(2^{N / 2}\right)^{1-\ell} g\left(\chi^{N / 2}\right)^{1-\ell} \prod_{j=0}^{\ell-1} g\left(\chi^{a+(N / \ell) j}\right) \\
& \Gamma(\ell z)=\ell^{\left(\ell z-\frac{1}{2}\right)} 2^{\frac{(1-\ell)}{2} \Gamma\left(\frac{1}{2}\right)^{1-\ell \ell-1} \prod_{j=0}^{1} \Gamma\left(z+\frac{j}{\ell}\right) .}
\end{aligned}
$$

$$
\begin{aligned}
& g(\chi) \overline{g(\chi)}=p, \\
& \Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin (z \pi)} .
\end{aligned}
$$

Hasse-Davenport Relation.

$$
\begin{aligned}
& g\left(\chi^{\ell a}\right)=(-1)^{\ell} \chi\left(\ell^{\ell a-N / 2}\right) \chi\left(2^{N / 2}\right)^{1-\ell} g\left(\chi^{N / 2}\right)^{1-\ell} \prod_{j=0}^{\ell-1} g\left(\chi^{a+(N / \ell) j}\right) \\
& \Gamma(\ell z)=\ell^{\left(\ell z-\frac{1}{2}\right)} 2^{\frac{(1-\ell)}{2}} \Gamma\left(\frac{1}{2}\right)^{1-\ell \ell-1} \prod_{j=0}\left\ulcorner\left(z+\frac{j}{\ell}\right) .\right.
\end{aligned}
$$

Proposition. Let $N \geq 4$ be an even integer such that N divides $p-1$ and let $\eta \in \widehat{\mathbb{F}_{p}^{\times}}$of order N. Let $A=\eta^{i}, B=\eta^{j}, C=\eta^{k}$ be characters such that none of $A, B, C, \bar{A} C, \bar{B} C$ are trivial. If $J\left(\eta^{j}, \eta^{k-j}\right) / J\left(\eta^{i}, \eta^{k-i}\right)$ is a character for each prime p with $p \equiv 1 \bmod N$, then $B\left(\frac{j}{N}, \frac{k-j}{N}\right) / B\left(\frac{i}{N}, \frac{k-i}{N}\right)$ is an algebraic number.

Example

Let p be a prime such that $10 \mid p-1$ and $\eta \in \widehat{\mathbb{F}_{p}^{\times}}$of order 10 . Then

$$
J\left(\eta, \eta^{6}\right) / J\left(\eta^{2}, \eta^{5}\right)=\eta(-1) J\left(\eta, \eta^{5}\right) / J\left(\eta^{2}, \eta^{4}\right)=\eta^{8}(2) .
$$

In comparison,

$$
B\left(\frac{1}{10}, \frac{6}{10}\right) / B\left(\frac{2}{10}, \frac{5}{10}\right)=2^{\frac{4}{5}} .
$$

In conclusion, if $\operatorname{End}\left(J_{\lambda}^{\text {new }}\right)$ contains a quaternion algebra, then

$$
J\left(\eta_{N}^{i}, \eta_{N}^{j}\right) / J\left(\eta_{N}^{-k}, \eta_{N}^{(i+j+k)}\right)
$$

has to be a character. Hence,

$$
B\left(\frac{i}{N}, \frac{j}{N}\right) / B\left(\frac{N-k}{N}, \frac{(i+j+k)}{N}\right) \in \overline{\mathbb{Q}},
$$

equivalently, $B\left(\frac{N-i}{N}, \frac{N-j}{N}\right) / B\left(\frac{N-k}{N}, \frac{2 N-i-j-k}{N}\right)$ has to be algebraic.
$X_{\lambda}^{[N ; 1, N-1,1]}$

- A period of $X_{\lambda}^{[N ; 1, N-1,1]}$ is

$$
B\left(\frac{1}{N}, 1-\frac{1}{N}\right){ }_{2} F_{1}\left[\begin{array}{ll}
\frac{N-1}{N} & \frac{1}{N} ; \lambda \\
& 1
\end{array}\right] .
$$

- Using the relation

one can deduce that the $G_{\mathbb{Q}\left(\lambda, \zeta_{N}\right)}$ representation $\sigma_{n}(\lambda)$ is isomorphic to $\sigma_{N-n}(\lambda)$.
- If $\sigma_{n}(\lambda)$ is absolutely irreducible, it can be descended to a 2-dimensional representation for G
$X_{\lambda}^{[N ; 1, N-1,1]}$
- A period of $X_{\lambda}^{[N ; 1, N-1,1]}$ is

$$
B\left(\frac{1}{N}, 1-\frac{1}{N}\right){ }_{2} F_{1}\left[\begin{array}{ll}
\frac{N-1}{N} & \frac{1}{N} ; \lambda \\
& 1
\end{array}\right] .
$$

- Using the relation

$$
{ }_{2} F_{1}\left(\begin{array}{cc}
A & \bar{A} \\
& \varepsilon
\end{array}\right)_{q}={ }_{2} F_{1}\left(\begin{array}{cc}
\bar{A} & A \\
& \varepsilon
\end{array}\right)_{q},
$$

one can deduce that the $G_{\mathbb{Q}\left(\lambda, \zeta_{N}\right)}$ representation $\sigma_{n}(\lambda)$ is isomorphic to $\sigma_{N-n}(\lambda)$.

- If $\sigma_{n}(\lambda)$ is absolutely irreducible, it can be descended to a

2-dimensional representation for G
$X_{\lambda}^{[N ; 1, N-1,1]}$

- A period of $X_{\lambda}^{[N ; 1, N-1,1]}$ is

$$
B\left(\frac{1}{N}, 1-\frac{1}{N}\right){ }_{2} F_{1}\left[\begin{array}{cc}
\frac{N-1}{N} & \frac{1}{N} ; \lambda \\
& 1
\end{array}\right] .
$$

- Using the relation

$$
{ }_{2} F_{1}\left(\begin{array}{cc}
A & \bar{A} \\
& \varepsilon
\end{array}\right)_{q}={ }_{2} F_{1}\left(\begin{array}{cc}
\bar{A} & A \\
& \varepsilon
\end{array}\right)_{q},
$$

one can deduce that the $G_{\mathbb{Q}\left(\lambda, \zeta_{N}\right)}$ representation $\sigma_{n}(\lambda)$ is isomorphic to $\sigma_{N-n}(\lambda)$.

- If $\sigma_{n}(\lambda)$ is absolutely irreducible, it can be descended to a 2-dimensional representation for $G_{\mathbb{Q}\left(\lambda, \zeta_{N}+\zeta_{N}^{-1}\right)}$.

$X_{\lambda}^{[3 ; 1,2,1]}$

Example

Let ρ be the 4-dimensional Galois representation of $G_{\mathbb{Q}}$ arising from the genus-2 curve $y^{3}=x(x-1)^{2}(1-\lambda x)$. Let ρ^{\prime} be the Galois representation of $G_{\mathbb{Q}}$ arising from the elliptic curve $y^{2}+x y+\frac{\lambda}{27}=x^{3}$. For any $\lambda \in \mathbb{Q}$ such that the elliptic curve does not have complex multiplication, ρ is isomorphic to $\rho^{\prime} \oplus\left(\rho^{\prime} \otimes \chi_{-3}\right)$ where χ_{-3} is the quadratic character of $G_{\mathbb{Q}}$ with kernel $G_{\mathbb{Q}(\sqrt{-3})}$.

$y^{5}=x(1-x)^{4}(1-2 x)$ and Hilbert modular forms

For the curve $y^{5}=x(1-x)^{4}(1-2 x)$, one can predict that its L-function is related to two Hilbert modular forms, which differ by embeddings of $\mathbb{Q}(\sqrt{5})$ to \mathbb{C}. From numeric data, we identified two Hilbert modular forms, which are labeled by Hilbert Cusp Form 2.2.5.1-500.1-a in the LMFDB online database.

p	$L_{p}(C(\lambda), T)$ over $\mathbb{Q}(\sqrt{5})$	Hecke eigenvalues
7	$\left(49 T^{4}+10 T^{2}+1\right)\left(49 T^{4}-10 T^{2}+1\right)$	-10
11	$\left(11 T^{2}-2 T+1\right)^{4}$	2,2
13	$\left(169 T^{4}+1\right)^{2}$	0
17	$\left(289 T^{4}-20 T^{2}+1\right)\left(289 T^{4}+20 T^{2}+1\right)$	20
19	$\left(19 T^{2}-5\left(\frac{1+\sqrt{5}}{2}\right) T+1\right)\left(19 T^{2}-5\left(\frac{1-\sqrt{5}}{2}\right) T+1\right)$	$5\left(\frac{1 \pm \sqrt{5}}{2}\right)$
31	$\left(\left(31 T^{2}+5\left(\frac{1+\sqrt{5}}{2}\right) T+1\right)\left(19 T^{2}+5\left(\frac{1-\sqrt{5}}{2}\right) T+1\right)\right.$	$\frac{-1 \pm 5 \sqrt{5}}{2}$
41	$\left(\left(41 T^{2}+\left(\frac{1+5 \sqrt{5}}{2}\right) T+1\right)\left(31 T^{2}+\left(\frac{1-5 \sqrt{5}}{2}\right) T+1\right)\right)^{2}$	$\left.T+1)\left(41 T^{2}+\left(\frac{1-5 \sqrt{5}}{2}\right) T+1\right)\right)^{2}$

$X_{\lambda}^{[12 ; 9,5,1]}$

- The arithmetic group $\Gamma=(2,6,6)$ can be realized as the monodromy group of a period on $J_{\lambda}^{[12 ; 9,5,1]}$.
- $H_{\Gamma}=B_{6}$

The corresponding periods of $J_{\lambda}^{\text {new }}$ are

$$
\begin{aligned}
& \tau_{1}=\int_{0}^{1} \omega_{1}=B(1 / 4,7 / 12)_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{12} & \frac{1}{4} ; \lambda \\
& \frac{5}{6}
\end{array}\right], \quad \int_{1 / \lambda}^{\infty} \omega_{1} \\
& \tau_{2}=\int_{0}^{1} \omega_{11}=B(5 / 12,3 / 4)_{2} F_{1}\left[\begin{array}{cc}
\frac{3}{4} & \frac{11}{12} \\
\frac{7}{6}
\end{array}\right], \lambda, \quad \int_{1 / \lambda}^{\infty} \omega_{11} \\
& \tau_{3}=\int_{0}^{1} \omega_{5}=B(1 / 4,4 / 12)_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{4} & \frac{5}{12} \\
& \frac{7}{6} ; \lambda
\end{array}\right], \quad \int_{1 / \lambda}^{\infty} \omega_{5} \\
& \tau_{4}=\int_{0}^{1} \omega_{7}=B(3 / 4,1 / 12)_{2} F_{1}\left[\begin{array}{cc}
\frac{7}{12} & \frac{3}{4} \\
& \frac{5}{6}
\end{array}\right], \quad \int_{1 / \lambda}^{\infty} \omega_{7}
\end{aligned}
$$

For the Gaussian hypergeometric functions, we have the identities:

$$
\begin{aligned}
{ }_{2} F_{1}\left(\begin{array}{cc}
\eta & \eta^{3} \\
\eta^{-2} ; \lambda
\end{array}\right)_{p} & =\eta^{2}(\lambda)_{2} F_{1}\left(\begin{array}{cc}
\eta^{5} & \eta^{3} \\
& \eta^{2} ; \lambda
\end{array}\right)_{p} \\
& =\eta\left(-27(1-\lambda)^{6}\right){ }_{2} F_{1}\left(\begin{array}{cc}
\eta^{-5} & \eta^{-3} ; \lambda
\end{array} \eta^{-2} ; \lambda\right. \\
& =\eta\left(-27 \lambda^{2}(1-\lambda)^{6}\right){ }_{2} F_{1}\left(\begin{array}{cc}
\eta^{-1} & \eta^{-3} ; \lambda \\
& \eta^{2} ; \lambda
\end{array}\right)_{p},
\end{aligned}
$$

where η is a multiplicative character of \mathbb{F}_{p}^{\times}of order 12 .
In this case,

$$
\int_{0}^{1} \omega_{1} / \int_{\frac{1}{\lambda}}^{\infty} \omega_{11}=B(1 / 4,7 / 12) / B(1 / 12,3 / 4)=\sqrt{\frac{2 \sqrt{3}}{3}-1} .
$$

For the subvariety $J_{\lambda}^{\text {new }}$, the lattice $\Lambda(\lambda)$ is generated by

$$
\begin{aligned}
& \tau_{1} \\
& \tau_{2}, \quad \tau_{2} / \zeta, \quad \tau_{2} / \zeta^{2}, \quad-i \tau_{2}, \\
& \begin{array}{ccccccc}
\alpha \tau_{2}, & \zeta^{5} \alpha \tau_{2}, & \alpha \tau_{2} / \zeta^{2}, & i \alpha \tau_{2}, & { }^{\alpha \lambda 1}, \\
\frac{i \tau_{1}}{} / \lambda^{\frac{1}{6}}, & \zeta^{5} i \tau_{1} / \lambda^{\frac{1}{6}}, & i \zeta_{1} / \zeta^{2} \lambda^{2} \lambda^{\frac{1}{6}}, \\
\frac{2+\sqrt{3}}{\alpha} \tau_{1}, & \frac{2+\sqrt{3}}{\alpha \zeta^{3}} \tau_{1}, & \frac{2+\sqrt{3}}{\alpha \zeta^{-2}} \tau_{1}, & \frac{2+\sqrt{3}}{i \alpha} \tau_{1}, & i \lambda^{\frac{1}{6}} \tau_{2}, & i \lambda^{\frac{1}{6}} \tau_{2} / \zeta^{5}, & \zeta^{2} i \lambda^{\frac{1}{6}} \tau_{2},
\end{array}
\end{aligned}
$$

where

$$
\begin{gathered}
\tau_{1}=B(1 / 4,7 / 12)_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{12} & \frac{1}{4} \\
& \frac{5}{6}
\end{array}\right], \lambda, \tau_{3}=B(5 / 12,3 / 4)_{2} F_{1}\left[\begin{array}{cc}
\frac{3}{4} & \frac{11}{12} \\
& \frac{7}{6}
\end{array}\right] \\
\alpha=(1-\lambda)^{1 / 2} \sqrt{9+6 \sqrt{3}} / 3 .
\end{gathered}
$$

$\operatorname{End}_{0}\left(J_{\lambda}^{\text {new }}\right)$ is generated by the endomorphisms

$$
\begin{aligned}
A= & \left(\begin{array}{cccc}
\zeta & 0 & 0 & 0 \\
0 & 1 / \zeta & 0 & 0 \\
0 & 0 & \zeta^{5} & 0 \\
0 & 0 & 0 & 1 / \zeta^{5}
\end{array}\right), \quad B=\left(\begin{array}{cccc}
0 & 0 & i / \lambda^{\frac{1}{6}} & 0 \\
0 & 0 & 0 & i \lambda^{\frac{1}{6}} \\
i \lambda^{\frac{1}{6}} & 0 & 0 & 0 \\
0 & i / \lambda^{\frac{1}{6}} & 0 & 0
\end{array}\right), \\
C & =\left(\begin{array}{cccc}
0 & i \frac{2+\sqrt{3}}{\alpha \lambda^{\frac{1}{6}}} & 0 & 0 \\
i \lambda^{\frac{1}{6}} \alpha & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{i \lambda^{\frac{1}{6}}}{\alpha} \\
0 & 0 & i \frac{\alpha \lambda^{-\frac{1}{6}}}{2+\sqrt{3}} & 0
\end{array}\right) .
\end{aligned}
$$

$E n d_{0}\left(U_{\lambda}^{\text {new }}\right)$ contains the quaternion algebra $\left(\frac{-1,3}{\mathbb{Q}}\right) \simeq H_{\Gamma}$, which is generated by B, and $A+A^{-1}$.

Theorem (Wüstholz)

Let A be an abelian variety isogenous over $\overline{\mathbb{Q}}$ to the direct product $A_{1}^{n_{1}} \times \cdots \times A_{k}^{n_{k}}$ of simple, pairwise non-isogenous abelian varieties A_{μ} defined over $\overline{\mathbb{Q}}, \mu=1, \ldots, k$. Let $\Lambda_{\overline{\mathbb{Q}}}(A)$ denote the space of all periods of differentials, defined over $\overline{\mathbb{Q}}$, of the first kind and the second on A. Then the vector space \widehat{V}_{A} over $\overline{\mathbb{Q}}$ generated by $1,2 \pi i$, and $\wedge_{\overline{\mathbb{Q}}}(A)$, has dimension

$$
\operatorname{dim}_{\overline{\mathbb{Q}}} \widehat{V}_{A}=2+4 \sum_{\nu=1}^{k} \frac{\operatorname{dim} A_{\nu}^{2}}{\operatorname{dim}_{\mathbb{Q}}\left(\operatorname{End}_{0} A_{\nu}\right)}
$$

$X_{\lambda}^{[10 ; 2,7,7]}$

- The arithmetic triangle group Γ is $(5,10,10)$.
- H_{Γ} is quaternion algebra defined over $\mathbb{Q}(\sqrt{5})$ with discriminant \mathfrak{p}_{2}.

The corresponding periods of $J_{\lambda}^{\text {new }}$ are

$$
\begin{aligned}
& \tau_{1}=\int_{0}^{1} \omega_{1}=B(3 / 10,4 / 5)_{2} F_{1}\left[\begin{array}{cc}
\frac{7}{10} & \frac{4}{5} \\
& \frac{11}{10}
\end{array}\right] \\
& \tau_{2}=\int_{0}^{1} \omega_{9}=B(7 / 10,1 / 5)_{2} F_{1}\left[\begin{array}{cc}
\frac{3}{10} & \frac{1}{5} ; \lambda \\
& \frac{9}{10}
\end{array}\right] \\
& \tau_{3}=\int_{0}^{1} \omega_{3}=B(9 / 10,2 / 5)_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{10} & \frac{2}{5} \\
\frac{13}{10} ; \lambda
\end{array}\right] \\
& \tau_{4}=\int_{0}^{1} \omega_{7}=B(1 / 10,3 / 5)_{2} F_{1}\left[\begin{array}{cc}
\frac{9}{10} & \frac{3}{5} ; \lambda \\
\frac{7}{10}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{1}^{\prime}=\int_{1}^{\infty} \omega_{1}=\frac{\sqrt{5}-1}{2 \alpha_{1}(\lambda) \beta_{1}} \tau_{2}, \tau_{2}^{\prime}=\int_{1}^{\infty} \omega_{9}=\alpha_{1}(\lambda) \beta_{1} \tau_{1} \\
& \tau_{3}^{\prime}=\int_{1}^{\infty} \omega_{3}=\frac{-\sqrt{5}-1}{2 \alpha_{1}(\lambda) \beta_{2}} \tau_{4}, \tau_{4}^{\prime}=\int_{1}^{\infty} \omega_{7}=\alpha_{2}(\lambda) \beta_{2} \tau_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha_{1}(\lambda)=(-1)^{7 / 5} \lambda^{1 / 10}(1-\lambda)^{2 / 5}, \beta_{1}=B(7 / 10,2 / 5) / B(3 / 10,4 / 5) \\
& \alpha_{2}(\lambda)=(-1)^{1 / 5} \lambda^{3 / 10}(1-\lambda)^{-4 / 5}, \beta_{2}=B(1 / 10,1 / 5) / B(9 / 10,2 / 5)
\end{aligned}
$$

- By using Gaussian hypergeometric functions, one knows that the subrepresentations σ_{m} and σ_{N-m} differ by a character. Thus β_{1}, β_{2} are both algebraic.
- σ_{1} and σ_{3} do not differ by a character.
- Combining with Wüstholz's result we know that for a generic $\lambda \in \overline{\mathbb{Q}}$, the 4-dimensional abelian variety $J_{\lambda}^{\text {new }}$ is simple, and $\Lambda_{\bar{O}}\left(J_{\lambda}^{\text {new }}\right)$ is 10-dimensional.
- By using Gaussian hypergeometric functions, one knows that the subrepresentations σ_{m} and σ_{N-m} differ by a character. Thus β_{1}, β_{2} are both algebraic.
- σ_{1} and σ_{3} do not differ by a character.
- Combining with Wüstholz's result we know that for a generic $\lambda \in \overline{\mathbb{Q}}$, the 4-dimensional abelian variety $J_{\lambda}^{\text {new }}$ is simple, and $\Lambda_{\overline{\mathbb{Q}}}\left(J_{\lambda}^{\text {new }}\right)$ is 10-dimensional.
- By using Gaussian hypergeometric functions, one knows that the subrepresentations σ_{m} and σ_{N-m} differ by a character. Thus β_{1}, β_{2} are both algebraic.
- σ_{1} and σ_{3} do not differ by a character.
- Combining with Wüstholz's result we know that for a generic $\lambda \in \overline{\mathbb{Q}}$, the 4-dimensional abelian variety $J_{\lambda}^{\text {new }}$ is simple, and $\Lambda_{\overline{\mathbb{Q}}}\left(J_{\lambda}^{\text {new }}\right)$ is 10 -dimensional.

The algebra $E n d_{0}\left(J_{\lambda}^{\text {new }}\right)$ contains the endomorphisms
$A=\left(\begin{array}{cccc}\zeta & 0 & 0 & 0 \\ 0 & \zeta^{-1} & 0 & 0 \\ 0 & 0 & \zeta^{3} & 0 \\ 0 & 0 & 0 & \zeta^{-3}\end{array}\right), B=\left(\begin{array}{cccc}0 & \alpha_{1}(\lambda) \beta_{1} & 0 & 0 \\ \frac{\sqrt{5}-1}{2 \alpha_{1}(\lambda) \beta_{1}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha_{2}(\lambda) \beta_{2} \\ 0 & 0 & \frac{-\sqrt{5}-1}{2 \alpha_{2}(\lambda) \beta_{2}} & 0\end{array}\right)$
The algebra $E n d_{0}\left(J_{\lambda}^{\text {new }}\right)$ contains the quaternion algebra
$\left(\frac{\frac{\sqrt{5}-1}{2}, \frac{\sqrt{5}-1}{2}}{\mathbb{Q}(\sqrt{5})}\right) \simeq H_{(5,10,10)}$.

