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• Problem 1: The modularity of elliptic curves, singular K3 surfaces and rigid Calabi–
Yau threefolds defined over Q have been established. All these cases are associated to
two-dimensional Galois representations.

Now suppose that these Calabi–Yau varieties are defined over number fields. Can one
establish the modularity of the associated two-dimensional Galois representations (the
potential modularity)? One ought to determine the L-series and interpret them in terms
of some modular forms.

• Problem 2: Even though we have been able to establish the modularity of Calabi–
Yau varieties over Q in Problem 1, we do not know the conceptual reason why the modular-
ity holds. We need to have some necessary and sufficient condition for the modularity from
geometry or physics, e.g., the Arakelov–Yau bound. For instance, the six rigid Calabi–Yau
threefolds corresponding to the index 12 subgroups of PSL2(Z) attain the Arakelov–Yau
bound. Also the eight non-rigid Calabi–Yau threefolds corresponding to the index 24 sub-
groups of PSL2(Z) reach the Arakelov–Yau bound. All these Calabi–Yau threefolds are
defined over Q and their modularity/automorphy have been established. Is the Arakelov–
Yau bound a necessary and sufficient condition for the modularity/automorphy?

• Problem 3: This is the so-called geometric realization problem.
For the dimension 2 case, every singular K3 surface X over Q is motivically modular

in the sense that the group of transcendental cycles T (X) corresponds to a newform of
weight 3. Conversely, every Hecke eigenform of weight 3 with integral Fourier coefficients
corresponds to T (X) of a singular K3 surface X defined over Q (Elkies and Schuett).

For dimension 3, rigid Calabi–Yau threefolds over Q are modular in the sense that there
is a weight 4 modular form on some Γ0(N) that determines the L-series. The converse
problem (raised by Mazur, and van Straten) is: Which newforms of weight 4 on some

Γ0(N) with integral Fourier coefficients would arise from rigid Calabi–Yau threefolds X
over Q?

• Problem 4: This is about singular K3 surfaces. They are in one-to-one corre-
spondence with the SL2(Z)-equivalence classes of positive definite even integral quadratic
forms. By Shafarevich, singular K3 surfaces are all of CM type, and they are defined
over number fields. Shafarevich proved that for every positive integer n, there are a finite
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number of singular K3 surfaces defined over a field of degree n over Q. For a fixed n,
is there a bound on the number of singular K3 surfaces defined over a field of degree n?
What is the minimal field of definition of a singular K3 surface? How many are defined
over Q? (According to Schütt, there should be 101 plus possibly one more.) Find defining
equations over Q for singular K3 surfaces.

• Problem 5: Consider K3 surfaces with Picard number ≤ 19. For instance, let X be
a K3 surface with Picard number 19 defined over Q. Then there should be a cusp form
g of weight 2 on GL(2) such that the symmetric square Sym2(g) should realize T (X). Is
L(T (X)⊗Qℓ, s) = L(Sym2(g), s)? Suppose that a Kummer surface is given by the product
E×E of some non-CM elliptic curve E over Q. Then the Shioda–Inose structure induces
an isomorphism of integral Hodge structures on the transcendental lattices, so X and
Km(E × E) have the same Q-Hodge structure. In this case, the two-dimensional Galois
representation ρE associated to E induces the three-dimensional Galois representation
Sym2(ρE) over some number field, say K. Therefore, T (X) is potentially modular, that
is, L(T (X) ⊗Qℓ, s) is determined over K by a modular form g associated to E. What is
a necessary and sufficient condition for the Sym2(ρE) to be defined over Q?

• Problem 6: This is about rigid Calabi–Yau threefolds over Q. These Calabi–Yau
threefolds are all modular. Hence they correspond to weight 4 modular forms for some
congruence subgroups of PSL2(Z). It happens in examples that two rigid Calabi–Yau
threefolds with the same set of Hodge numbers correspond to the same weight 4 modular
form, so that their L-series coincide. The Tate Conjecture asserts that there should be
an algebraic correspondence between the two rigid Calabi–Yau threefolds defined over Q

which induces the identification of the L-series. Construct such an algebraic correspon-
dence.

• Problem 7: This is about Calabi–Yau threefolds of CM type. Construct Calabi–Yau
threefolds over Q of CM type and classify them. Start with rigid Calabi–Yau threefolds
over Q of CM type. There are toric constructions of Calabi–Yau threefolds, about 600
million, though rigid Calabi–Yau threefolds arise very rarely via this contruction. It is
not clear from these combinatorial data which Calabi–Yau threefolds are of CM type.

• Problem 8: Let X be a Calabi–Yau threefold. The intermediate Jacobian J(X) of
X is a complex torus of dimension B3(X)/2 where B3(X) is the third Betti number of X.
By definition, J(X) is Hodge theoretic, and hence of transcendental nature. One would
like to detect some algebro-geometric, or arithmetic properties of J(X) from some specific
transcendental features of Hodge structures of X.

For a rigid Calabi–Yau threefold X, J(X) is a simply a complex torus of dimension 1.
If X has a model defined over Q, it is expected that J(X) would have a model defined
over Q. Are there any relations between the L-series of X and J(X)? Molnar has some
results along this line.

For non-rigid Calabi–Yau threefolds, one can ask the same question. Start with the case
when J(X) is a complex torus of dimension 2. Or consider special types of Calabi–Yau
threefolds, e.g., K3-fibered or elliptic fibered Calabi–Yau threefolds.



OPEN PROBLEMS ON CALABI–YAU VARIETIES ARITHMETIC, GEOMETRY AND PHYSICS3

• Problem 9: Now we consider families of Calabi–Yau varieties. The modularity of
the mirror map ought to be investigated. To construct mirror maps, one need to look
at the Picard–Fuchs differential equations of Calabi–Yau families. This problem may be
tractable if the Picard–Fuchs differential equations are of hypergeometric type, or GKZ
hypergeometric systems. Then one needs to determine the monodromy groups for the
Picard–Fuchs differential equations. This is a very difficult problem. The only result
known so far is that the Zariski closure of the monodromy groups of the Dwork families
in Pn is Spn(Z).

For the dimension 2 case, consider one-or-two parameter families of K3 surfaces. Com-
pute mirror maps, and discuss their modularity. Start with K3 surfaces with Picard
numbers 19, 18 or 17 equipped with lattice polarizations.

For dimension 3, start with one-parameter families of Calabi–Yau threefolds. For the
14 one-parameter Calabi–Yau threefold families of hypergeometric type, the Picard–Fuchs
differential equations have been computed, and the monodromy groups have shown to be
arithmetic for 7 families, but for the remaining 7 families, the monodromy groups have
been shown to be thin. One of the implications of the monodromy group being thin is
that the mirror map of the family is most unlikely to have a modular property. Thin
monodromy groups might be non-congruence subgroups of Sp4(Z) and mirror maps have
unbounded denominators.

For one-parameter families of Calabi–Yau threefolds whose Picard–Fuchs differential
equations are of non-hypergeometric type (which are considered by Yang and myself), the
first thing is to look into their monodromy groups (arithmetic or thin). We know that the
Zariski closures of the monodromy groups are Sp4(Z). Then compute their mirror maps
by the Frobenius method. Discuss the modularity (or non-modularity) of mirror maps.

• Problem 10: This is the so-called a geometric modularity problem. This is about
the quasi-modularity of the generating functions of the Gromov–Witten invariants and
some related invariants (e.g., the Gopakummar–Vafa invariants, the Donaldson–Thomas
invariants) for Calabi–Yau manifolds. (However, the Gromov–Witten invariants are trivial
on K3 surfaces.)

There are many examples on calculation of Gromov–Witten invariants and related
invariants and their generating functions. For instance, consider an elliptic Calabi–Yau
threefold defined over a del Pezzo surface of degree 8. The generating function of Gromov–
Witten invariants and Gopakummer–Vafa invariants can be expressed in terms of Eisen-
stein series and quasi-modular forms.

Again we do not know a conceptual reason why quasi-modular forms appear in this
landscape. Perhaps, we need string theoretic reason(s), e.g., properties like, the S-duality
or elliptic genera, etc., satisfied by these generating functions?

• Problem 11: Mirror symmetry (in String theory). One formulation of “Mirror sym-
metry (conjecture)” from String theory is: There exists a pair of Calabi–Yau threefolds

(X,X∨) and an isomorphism H1,1(X) → H2,1(X∨) such that this isomorphism exchanges

the prepotential of the A-model Yukawa coupling defined on the complexified Kähler cone
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κX ⊂ H1,1(X) with the prepotential of the B-model Yukawa coupling defined on the com-

plex structure moduli space whose tangent space is H2,1(X∨).
For dimension 1, the generating function of simply ramified covers of an elliptic curve

with 2g − 2 marked points has been shown to be a quasi-modular form of weight 6g − 6
on PSL2(Z). This is the A-model (Fermion) calculation. On the B-model (Bosonic)
calculation, one ought to compute Feynman integrals on graphs with 2g − 2 vertices
and 3g − 3 edges. Conjecturally, the A-model and the B-model calculations should give
the same result. A conceptual reason why quasi-modular forms enter the scene may be
deduced from the B-model calculation.

For dimension 2, i.e, K3 surfaces, there is the beautiful formula due to Yau and Zaslow
that expresses the generating function of the numbers of nodal curves in terms of the
Dedekind eta-function. Let n(g) (with convention n(0) = 0) be the number of rational
(highly singular) curves on a K3 surface X that represent a homology class A ∈ H2(X,Z)
with A2 = 2g − 2. The Yau–Zaslow formula is

∑
g≥0 n(g)qg = q/∆(q) where ∆(q) is the

weight 12 cups form for PSL2(Z). There are many generalizations of the Yau–Zaslow
formula, all of which relate generating functions to quasi-modular forms. As far as I am
aware, there seems no calculations done on the B-model size.

For dimension 3, there are a couple of examples in support of the mirror symmetry
conjecture. For instance, let X be the quintic Calabi–Yau threefold, and let X∨ be it
its mirror, which is an orbifold of a one-parameter deformation of X quotiented out by
a finite discrete group of symmetries. Then the A-model Yukawa coupling is ΦA,X =

5 +
∑∞

d=1 ndd
3 qd

1−qd
where nd denotes the number of rational curves of degree d in X. The

B-model Yukawa coupling is ΦB,X∨ = 5 + 2, 875q + 609, 250q2 + 317, 206, 375q3 + O(q4).
The mirror symmetry asserts that ΦA,X = ΦB,X∨ for all d.

Establish the mirror symmetry conjecture for many mirror pairs of Calabi–Yau three-
folds. For this problem, you need a good physics background.

• Problem 12: Arithmetic mirror symmetry. One can consider mirror symmetry from
an arithmetic point of view. There are several variants of mirror symmetry, e.g., Berglund–
Hübsch mirror symmetry, Landau–Ginzburg mirror symmetry, toric mirror symmetry, and
many more.

For K3 surfaces also, there are several variants of mirror symmetry, e.g., Arnold’s
strange duality, toric duality, etc.

Assume that a Calabi–Yau variety X has a model, e.g., a hypersurface, or a complete
intersection, defined over Q. Its mirror partner X∨ arises in a family. Again assume that
X∨ has a model, e.g., a hypersurface defining equation or a complete intersection defined
over Q with one deformation parameter.

Count the number of rational points modulo a good prime p and construct the con-
gruence zeta-function of X. There are several methods available for point counting. On
the mirror side, do the same at some special point assigning a value to the deformation
parameter.

Detect the mirror symmetry phenomenon at the level of zeta-functions and L-series.
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Also compute the formal group of X and that of a mirror partner. Compute the unit
root zeta-functions. Is the height bounded above by some geometric invariant? Is there
any relation between heights of mirror pairs?

• Problem 13: For a rigid Calabi–Yau threefold, its mirror partner is not a Calabi–Yau
threefold. It is expected that mirrors of rigid Calabi–Yau threefolds are Fano varieties.
Construct Fano varieties as mirrors of rigid Calabi–Yau threefolds.

When a rigid Calabi–Yau threefold and a Fano variety have models defined over Q,
compute their zeta-functions and L-series, and establish arithmetic mirror symmetry.

• Problem 14: Once one can compute the zeta-functions and L-series of Calabi–
Yau manifolds defined over Q, discuss their special values at some special points. This
problem leads to the Birch–Swinnerton-Dyer Conjecture for elliptic curves, the Bloch–
Beilinson Conjecture for K3 surfaces. For Calabi–Yau threefolds, we have yet to even
formulate a conjectural formula for special values. Here is a conjecture.

Conecture: Let X be a Calabi–Yau threefold defined over a number field K. Then

(a) Define, for a prime ℓ,

CH2(XK)hom := Ker[CH2(XK) → H4(XK ,Zℓ(2))].

Then CH2(XK)hom is a finitely generated abelian group,

(b) the rank of CH2(XK)hom is equal to the order of L(XK , s) at s = 2.

(c) Suppose that X is a rigid Calabi–Yau threefold over Q. Suppose that the interme-
diate Jacobian J2(X) has a model defined over Q. Assume that the Abel–Jacobi map
CH2(X) ⊗ Q → J2(X) ⊗ Q is injective. Then

rankZ CH2(X)hom ≤ rankZJ2(X)(Q)

or equivalently,
ords=2L(X, s) ≤ ords=1L(J2(X), s).

The equality of the right hand side on J2(X) and ords=1J
2(X)(Q) is the conjecture of

Birch and Swinnerton-Dyer. The equality on the left hand side on the rank of CH2(X)hom

and ords=2L(X, s) is the conjecture of Beilinson–Bloch.
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