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Timeline - Hurwitz

1859 Born.

1881 Doctorate under Felix
Klein.

1892 Frobenius’s successor,
ETH Zurich.

1919 Died, leaving many
unpublished notebooks.

George Polya drew attention
to the contents.

Figure: Adolf Hurwitz

Pic. Source - library.ethz.ch/en/Resources
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Timeline - Gassmann

Fritz Gassmann (1899− 1990).

Swiss mathematician and geophysicist.

In 1926, Gassmann published one set of Hurwitz’s notes
followed by Gassmann’s interpretation of what Hurwitz meant.
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Gassmann’s Condition

Throughout, H and H′ will denote subgroups of a finite group G.

In Gassmann’s paper, the following group-theoretic condition
appeared:

|c ∩ H| = |c ∩ H′| (1)

for any conjugacy class c in G.

When (1) holds, H and H′ are called Gassmann equivalent in G.

We call (G,H,H′), a Gassmann triple.

If H,H′ are conjugate in G, then (G,H,H′) is trivial Gassmann
triple. e.g. Cyclic Gassmann equivalent subgroups.
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Some Results

Theorem (Lenstra, 2000)

For every positive integer n, the following are equivalent.

1 There exists a finite solvable group G with two nontrivial
Gassmann equivalent subgroups of index n.

2 There are prime numbers p, q, r with pqr|n and p|q(q− 1).
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Some Results

Theorem (Feit, 1980)

Let (G,H,H′) be a nontrivial Gassmann triple of prime index p. Then
either
p = 11 or,

p =
qk − 1
q− 1

,

for some prime power q and some k ≥ 3.
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Some Results

Theorem (de Smit, 2003)

For every odd prime p, there is a nontrivial Gassmann triple of index
n = 2p + 2.
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Some Results

Theorem (Perlis, 1977)

If H and H′ are Gassmann equivalent in G and (G : H) ≤ 6, then H is
conjugate in G to H′.
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Some Results

Two finite groups are said to have the same order type if they
have the same number of elements of any given order.

Example

Two subgroups H = 〈(12)(345)〉, and H′ = 〈(12345)〉 of G = S6
have the same ordere type.

Gassmann equivalent subgroups have the same order type.

Theorem

Two finite abelian groups G and G′ with the same order type are
isomorphic.
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Some Results

Theorem

For every natural number n, there exists a finite group G with n + 1
pairwise non-conjugate subgroups H0,H1, · · · ,Hn such that Hi and
Hj are Gassmann equivalent in G for all i, j = 0, 1, · · · , n.
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Some Results

Let (G,H,H′) be a Gassmann triple and M be a normal subgroup of
G. Then

H ∩M and H′ ∩M are Gassmann equivalent in G.

HM and H′M are Gassmann equivalent in G.
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Bijective Local Conjugacy

Definition

Two subgroups H and H′ of G are called bijectively locally conjugate
in G if there exists a bijection ϕ : H −→ H′ such that h and ϕ(h) are
conjugate in G for any h ∈ H.
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Example

Consider the group

G = (Z/8Z)∗ n Z/8Z = {(h, k)| h = 1, 3, 5, 7; k = 0, 1, 2, . . . , 7}

with the operation defined by

(x, y)(h, k) = (xh, hy + k).

Let

H = {(1, 0), (3, 0), (5, 0), (7, 0)}

H′ = {(1, 0), (3, 4), (5, 4), (7, 0)}.

Mapping vertically gives a multiplicative bijective local
conjugation ϕ : H −→ H′ in G, which is not a global
conjugation.
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Theorem

The following statements are equivalent:

1 |gG ∩ H| = |gG ∩ H′| for all g ∈ G (Gassmann’s condition).

2 H and H′ are bijectively locally conjugate in G [S. Chen, 1992].

3 There exists a bijective local conjugation ϕ̄ : G −→ G such that
ϕ̄(H) = H′.
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A Different Approach to Gassmann Equivalence

Let H be a subgroup of a finite group G.

For g ∈ G, let πg be the permutation of G/H given by left
multiplication by g.

Let γi = γi(πg) be the number of cycles of πg of length i.

Set Γ(πg) =
∑

γi.

Let H′ be another subgroup of G, and π′g be the permutation of
G/H′ given by left multiplication by g.
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A Different Approach to Gassmann Equivalence

Theorem

The following statements are equivalent:

1 H and H′ are Gassmann equivalent in G.

2 γ1(πg) = γ1(π′g) for all g ∈ G.

3 γi(πg) = γi(π
′
g) for all g ∈ G and for all i = 1, 2, · · · , n.

4 Γ(πg) = Γ(π′g) for all g ∈ G.
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A Different Approach to Gassmann Equivalence

The proof uses the following lemma.

Lemma

For any σ, τ ∈ Sn, the following are equivalent:

1 σ and τ are conjugate in Sn.

2 γ1(σk) = γ1(τ k) for all k = 1, 2, · · · , n.

3 γi(σ) = γi(τ) for all i = 1, 2, · · · , n.

4 Γ(σk) = Γ(τ k) for all k = 1, 2, · · · , n.
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A Different Approach to Gassmann Equivalence

Proof.

(4)⇒ (3).

Γ(σk) =

n∑
j=1

gcd(k, j) · γj(σ) for k = 1, 2, · · · , n.

Set M = (mij), where mij = gcd(i, j).

(Γ(σ),Γ(σ2), . . . ,Γ(σn)) = (γ1(σ), γ2(σ), . . . , γn(σ)) ·M.

By Smith, 1876, det(M) = ϕ(1) · ϕ(2) · · ·ϕ(n) 6= 0.

(Γ(σ),Γ(σ2), . . . ,Γ(σn)) ·M−1 = (γ1(σ), γ2(σ), . . . , γn(σ)).B. Kafle (Purdue U. Northwest) On the Gassmann Equivalence
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Proof.

(4)⇒ (3).

Γ(σk) =

n∑
j=1

gcd(k, j) · γj(σ) for k = 1, 2, · · · , n.

Set M = (mij), where mij = gcd(i, j).
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Reformulations of Gassmann Equivalence

Lemma

Let H,H′ be subgroups of a finite group G. The following statements
are equivalent:

1 H,H′ satisfy Gassmann’s condition in G.

2 H,H′ are bijectively locally conjugate in G.

3 There exists a bijective local conjugation ϕ̄ : G −→ G such that
ϕ̄(H) = H′.

4 Q[G/H] ∼= Q[G/H′] as Q[G]-modules.

5 γ1(πg) = γ1(π′g) for all g ∈ G.
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Reformulations of Gassmann Equivalence

Lemma (cont.)

6 coset type [G mod (H,C)] = coset type [G mod (H′,C)] for any
cyclic subgroup C of G.

7 Γ(πg) = Γ(π′g) for all g ∈ G.

8 πg and π′g have the same cycle length sequence for all g ∈ G
(sequence of lengths of cycles in factorization of πg and π′g).

9 πg and π′g have the same cycle number sequence for all g ∈ G.

10 (G : H) = (G : H′) = n and πg, π
′
g are conjugate in Sn, for all

g ∈ G.
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Applications of Gassmann Equivalence

Gassmann triple (G,H,H′) can be used to produce:

pairs of number fields having identical Dedekind zeta functions.

pairs of isospectral Riemannian manifolds.

pairs of nonisomorphic finite graphs with identical Ihara zeta
functions.
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Arithmetically Equivalent Number Fields

K pOK = pe1
1 · · · p

et
t OK/pi

Q p Z/p

fi

Order the primes pi so that fi ≤ fi+1.

(f1, f2, · · · , ft) = splitting type in K of the prime p.
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Arithmetically Equivalent Number Fields

Definition

Two number fields K,K′ are said to be arithmetically equivalent if
each prime p ∈ Z has the same splitting type in K as in K′.
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Q

K K′ G = Gal(N/Q)

N

H H′
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Perlis’ Theorem

Theorem

The following statements are equivalent:

1 ζK(s) = ζK′(s).

2 K,K′ are arithmetically equivalent.

3 H and H′ are Gassmann equivalent in G.
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A New Proof Stuart-Perlis Theorem

Theorem (Stuart and Perlis, 1995)

The following statements are equivalent:

1 K,K′ are arithmetically equivalent.

2 Almost every prime number p has the same number of prime
ideal factors in K as in K′.
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A New Proof Stuart-Perlis Theorem

Proof.

(2)⇒ (1).

G = Gal(N/Q), H = Gal(N/K) and H′ = Gal(N/K′).

For each prime p ∈ Z unramified in N, choose a prime Q of N
lying over p.

Let σQ be the Frobenius automorphism of Q/p, defined by

σQ(a) ≡ ap mod Q

for all a ∈ ON .
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A New Proof Stuart-Perlis Theorem

Proof (cont.)

Let K = Q(α)/Q be a finite extension of number fields, N/Q a
Galois extension with K ⊂ N and G = Gal(N/Q). For any
prime number p which is unramified in N the following
statements are equivalent:

1 p has splitting type (f1, f2, . . . , ft) in K.
2 For any prime Q of N lying over p, the Frobenius automorphism
σQ acting on the n conjugates of α has cycle length sequence
(f1, f2, . . . , ft).
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A New Proof Stuart-Perlis Theorem

Proof (cont.)

It is given that Γ(πσQ) = Γ(π′σQ).

Take ω ∈ G.

By Chebotarev Density Theorem, there exists a prime p
unramified in N, and a prime Q of N lying over p with σQ = ω.

So Γ(πω) = Γ(π′ω).

ω is an arbitrary.

H and H′ are Gassmann equivalent in G.

By Perlis’ theorem, K,K′ are arithmetically equivalent.
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A Construction

Theorem

For every natural number n, there exist n + 1 arithmetically
equivalent number fields K0,K1, · · · ,Kn such that Ki is not
isomorphic to Kj for i 6= j wherel i, j = 0, 1, · · · , n.
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Pell Equations
Some Recent Results
Our Result

Definition of a Pell Equation

Definition

A Pell equation is an equation of the form

x2 − Dy2 = K,

where D is a nonsquare positive integer and K is a nonzero integer.
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Pell Equations
Some Recent Results
Our Result

A Quick History

Question

Why is it called a Pell equation?

It is named after John Pell (1610-1685). There is no evidence that he
had ever considered solving such equations.

Lenstra (2002) wrote that Euler (1707-1783) mistakenly attributed to
Pell a solution method that had in fact been found by another
mathematician, William Brouncker (1601-1665).
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Pell Equations
Some Recent Results
Our Result

The more common Pell equations studied are

x2 − Dy2 = ±1,

x2 − Dy2 = ±2,

x2 − Dy2 = ±4,

where D is a nonsquare integer.

How can one solve the equation

x2 − Dy2 = 1?
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Let us consider all solutions x + y
√

D of the equation

x2 − Dy2 = 1,

with positive x and y.

Among these solutions, there is a least solution x1 + y1
√

D, in which
x1 and y1 have their least positive values. The number x1 + y1

√
D is

called the fundamental solution of the Pell equation.
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Theorem 104, Nagell

Theorem

If D is a natural number which is not a perfect square, the Pell
equation

x2 − Dy2 = 1

has infinitely many solutions x + y
√

D. All solutions with positive xn

and yn are obtained by the formula

xn + yn
√

D = (x1 + y1
√

D)n,

where x1 + y1
√

D is the fundamental of the Pell equation.
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Examples

Example

The fundamental solution of x2 − 2y2 = 1 is

3 + 2
√

2.

Upto sign, all the positive integer solutions are given by

(x + y
√

2) = (3 + 2
√

2)n,

with n ≥ 1.

B. Kafle (Purdue U. Northwest) On the Gassmann Equivalence



Introduction
Gassmann Equivalence

Local Conjugation
A Different Approach

Applications to Number Fields
Current Research

Pell Equations
Some Recent Results
Our Result

Theorem (Dossavi-Yovo, Luca, Togbe (2015))

Let d ≥ 2 be square-free. The Diophantine equation

xn = a
(

10m − 1
9

)
, m ≥ 1 and a ∈ {1, . . . , 9} (2)

has at most one positive integer solution n with the following
exceptions:

1 d = 2, n ∈ {1, 3};
2 d = 3, n ∈ {1, 2}.
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Theorem (Faye, Luca (2015))

Let b ≥ 2 be fixed. Let d ≥ 2 be squarefree et let
(xn, yn) = (xn(d), yn(d)) be the nth positive integer solution of the Pell
equation x2 − dy2 = 1. If the Diophantine equation

xn = a
(

bm − 1
b− 1

)
, m ≥ 1 and a ∈ {1, . . . , b− 1} (3)

has two positive integer solutions (n, a,m), then

d ≤ exp
(

(10b)105
)
.
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Let d ≥ 2 be an integer which is not a square. Now, we consider the
Pell equation

x2 − dy2 = ±4. (4)

Before getting to our main result, let us make some numerical
observations. It is known that all positive integer solutions (x, y) of
(4) are given by

xn + yn
√

d
2

=

(
x1 + y1

√
d

2

)n

for some positive integer n, where (x1, y1) is the smallest positive
integer solution.
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Let {Fm}m≥0 be the Fibonacci sequence.

We study when can xn be a Fibonacci number, which reduces to the
Diophantine equation

xn ∈ {Fm}m≥1. (5)

If m = 1, 2, then xn = Fm = 1. Using equation (4), we get that
n = 1, d = 5, Yn = 1.

If m = 3, then xn = Fm = 2. Using equation (4), we get that
n = 1, d = 2, yn = 2.
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Theorem (K., Luca, Togbe (2016))

Let d ≥ 2 be a square-free integer. The Diophantine equation

xn ∈ {Fm}m≥4 (6)

has at most one solution (n,m) in positive integers. Allowing also
m ∈ {1, 2, 3}, the above Diophantine equation still has at most one
solution except for d = 2 and d = 5, cases in which

n ∈ {1, 4}, and n ∈ {1, 2},

respectively, are all the solutions of the containment (6).

The proof is made in two parts.
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First Part: n is even

Write n = 2n1. Since

xn = x2n1 = x2
n1
− 2ε, with ε ∈ {±1}.

Therefore, it suffices to solve the equation

x2 ± 2 = Fm, where m ≥ 1.

We obtain four elliptic curves of the form

v2 = 5(u2 ± 2)2 ± 4.

We obtained only one acceptable solution (u, v) = (2, 16), leading us
xn = Fm = 2 = F3, and yn = 2.
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Lemma

Assume that X2 − dY2 = ±4 and that Xn = Fm for some even n.
Then, (n, d) = (2, 5), (4, 2). Additionally, if d = 2 and d = 5, the
only solutions of Xn = Fm are n = 1, 4, and n = 1, 2, respectively.
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Second Part: n is odd

With some simple observations, we set

x1 = Fm1 and xn = Fm1t,

where m1, t are positive integeres > 1.

We consider several techniques to bound the parameters m1, n.

γm1 < 6n2, where γ =
1 +
√

5
2

.

Then, we use a Baker’s method (Matveev version) to get
n ≤ 2.9× 1015, and m1 ≤ 154.
To consider the remaining cases, for m1 ∈ [4, 154], we use the
Baker-Davenport reduction method , which gives us
n < m1t ≤ 157.
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Thank You!
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