Recent Developments on Gassmann Equivalence in Groups

Bir Kafle

(Joint work with R. Litherland, R. Perlis and M. Somadi)

Math/Stat/CS Department Purdue University Northwest

Southern Regional Number Theory Conference Baton Rouge, LA, April 08-09, 2017

NORTHWEST

イロン イボン イヨン イヨン

з

・ロト ・御 ト ・ ヨト ・ ヨト

з

Timeline - Hurwitz

- 1859 Born.
- 1881 Doctorate under Felix Klein.
- 1892 Frobenius's successor, ETH Zurich.
- 1919 Died, leaving many unpublished notebooks.
- George Polya drew attention to the contents.

Pic. Source - library.ethz.ch/en/Resources

Figure: Adolf Hurwitz

Timeline - Gassmann

- Fritz Gassmann (1899 1990).
- Swiss mathematician and geophysicist.
- In 1926, Gassmann published one set of Hurwitz's notes followed by Gassmann's interpretation of what Hurwitz meant.

Gassmann's Condition

Throughout, H and H' will denote subgroups of a finite group G.

■ In Gassmann's paper, the following group-theoretic condition appeared:

$$|c \cap H| = |c \cap H'| \tag{1}$$

for any conjugacy class c in G.

- When (1) holds, H and H' are called *Gassmann equivalent* in G.
- We call (G, H, H'), a Gassmann triple.
- If H, H' are conjugate in G, then (G, H, H') is *trivial* Gassmann triple. e.g. Cyclic Gassmann equivalent subgroups.

Gassmann's Condition

- Throughout, H and H' will denote subgroups of a finite group G.
- In Gassmann's paper, the following group-theoretic condition appeared:

$$|c \cap H| = |c \cap H'| \tag{1}$$

for any conjugacy class c in G.

- When (1) holds, *H* and *H'* are called *Gassmann equivalent* in *G*.
- We call (G, H, H'), a Gassmann triple.
- If H, H' are conjugate in G, then (G, H, H') is *trivial* Gassmann triple. e.g. Cyclic Gassmann equivalent subgroups.

Gassmann's Condition

- Throughout, H and H' will denote subgroups of a finite group G.
- In Gassmann's paper, the following group-theoretic condition appeared:

$$|c \cap H| = |c \cap H'| \tag{1}$$

for any conjugacy class c in G.

- When (1) holds, H and H' are called *Gassmann equivalent* in G.
- We call (G, H, H'), a *Gassmann triple*.
- If H, H' are conjugate in G, then (G, H, H') is *trivial* Gassmann triple. e.g. Cyclic Gassmann equivalent subgroups.

Some Results

Theorem (Lenstra, 2000)

For every positive integer n, the following are equivalent.

- **1** There exists a finite solvable group G with two nontrivial Gassmann equivalent subgroups of index n.
- **2** There are prime numbers p, q, r with pqr|n and p|q(q-1).

Some Results

Theorem (Feit, 1980)

Let (G, H, H') be a nontrivial Gassmann triple of prime index p. Then either p = 11 or, $p = \frac{q^k - 1}{q - 1}$, for some prime power q and some k > 3.

Some Results

Theorem (de Smit, 2003)

For every odd prime p, there is a nontrivial Gassmann triple of index n = 2p + 2.

Some Results

Theorem (Perlis, 1977)

If H and H' are Gassmann equivalent in G and $(G : H) \leq 6$, then H is conjugate in G to H'.

B. Kafle (Purdue U. Northwest) On the Gassmann Equivalence

Some Results

• Two finite groups are said to have the same order type if they have the same number of elements of any given order.

Example

Two subgroups $H = \langle (12)(345) \rangle$, and $H' = \langle (12345) \rangle$ of $G = S_6$ have the same ordere type.

Gassmann equivalent subgroups have the same order type.

Theorem

Two finite abelian groups G and G' with the same order type are isomorphic.

Some Results

• Two finite groups are said to have the same order type if they have the same number of elements of any given order.

Example

Two subgroups $H = \langle (12)(345) \rangle$, and $H' = \langle (12345) \rangle$ of $G = S_6$ have the same ordere type.

Gassmann equivalent subgroups have the same order type.

Theorem

Two finite abelian groups G and G' with the same order type are isomorphic.

Some Results

Theorem

For every natural number n, there exists a finite group G with n + 1 pairwise non-conjugate subgroups H_0, H_1, \dots, H_n such that H_i and H_j are Gassmann equivalent in G for all $i, j = 0, 1, \dots, n$.

Some Results

Let (G, H, H') be a Gassmann triple and M be a normal subgroup of G. Then

• $H \cap M$ and $H' \cap M$ are Gassmann equivalent in G.

• HM and H'M are Gassmann equivalent in G.

Some Results

Let (G, H, H') be a Gassmann triple and M be a normal subgroup of G. Then

- $H \cap M$ and $H' \cap M$ are Gassmann equivalent in G.
- HM and H'M are Gassmann equivalent in G.

Bijective Local Conjugacy

Definition

Two subgroups H and H' of G are called *bijectively locally conjugate* in G if there exists a bijection $\varphi : H \longrightarrow H'$ such that h and $\varphi(h)$ are conjugate in G for any $h \in H$.

Example

Consider the group

 $G = (\mathbb{Z}/8\mathbb{Z})^* \ltimes \mathbb{Z}/8\mathbb{Z} = \{(h,k) | h = 1, 3, 5, 7; k = 0, 1, 2, \dots, 7\}$

with the operation defined by

$$(x, y)(h, k) = (xh, hy + k).$$

Let

$$H = \{(1,0), (3,0), (5,0), (7,0)\}$$
$$H' = \{(1,0), (3,4), (5,4), (7,0)\}.$$

• Mapping vertically gives a multiplicative bijective local conjugation $\varphi : H \longrightarrow H'$ in *G*, which is not a global conjugation.

Example

Consider the group

 $G = (\mathbb{Z}/8\mathbb{Z})^* \ltimes \mathbb{Z}/8\mathbb{Z} = \{(h,k) | h = 1, 3, 5, 7; k = 0, 1, 2, \dots, 7\}$

with the operation defined by

$$(x, y)(h, k) = (xh, hy + k).$$

Let

$$H = \{(1,0), (3,0), (5,0), (7,0)\}$$
$$H' = \{(1,0), (3,4), (5,4), (7,0)\}.$$

• Mapping vertically gives a multiplicative bijective local conjugation $\varphi : H \longrightarrow H'$ in *G*, which is not a global conjugation.

Example

Consider the group

 $G = (\mathbb{Z}/8\mathbb{Z})^* \ltimes \mathbb{Z}/8\mathbb{Z} = \{(h,k) | h = 1, 3, 5, 7; k = 0, 1, 2, \dots, 7\}$

with the operation defined by

$$(x, y)(h, k) = (xh, hy + k).$$

Let

$$H = \{(1,0), (3,0), (5,0), (7,0)\}$$
$$H' = \{(1,0), (3,4), (5,4), (7,0)\}.$$

• Mapping vertically gives a multiplicative bijective local conjugation $\varphi : H \longrightarrow H'$ in *G*, which is not a global conjugation.

Theorem

The following statements are equivalent:

- $[1] |g^G \cap H| = |g^G \cap H'| \text{ for all } g \in G \text{ (Gassmann's condition)}.$
- **2** *H* and *H'* are bijectively locally conjugate in *G* [*S*. Chen, 1992]
- **3** There exists a bijective local conjugation $\bar{\varphi} : G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Theorem

The following statements are equivalent:

- 1 $|g^G \cap H| = |g^G \cap H'|$ for all $g \in G$ (Gassmann's condition).
- 2 *H* and *H*′ are bijectively locally conjugate in *G* [S. Chen, 1992]
- **3** There exists a bijective local conjugation $\bar{\varphi} : G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.

イロト イポト イヨト イヨト

Theorem

The following statements are equivalent:

- 1 $|g^G \cap H| = |g^G \cap H'|$ for all $g \in G$ (Gassmann's condition).
- **2** *H* and *H'* are bijectively locally conjugate in *G* [*S.* Chen, 1992].
- **3** There exists a bijective local conjugation $\bar{\varphi} : G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.

Theorem

The following statements are equivalent:

- 1 $|g^G \cap H| = |g^G \cap H'|$ for all $g \in G$ (Gassmann's condition).
- **2** *H* and *H'* are bijectively locally conjugate in *G* [*S.* Chen, 1992].
- 3 There exists a bijective local conjugation $\bar{\varphi}: G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.

A Different Approach to Gassmann Equivalence

- Let *H* be a subgroup of a finite group *G*.
- For $g \in G$, let π_g be the permutation of G/H given by left multiplication by g.
- Let $\gamma_i = \gamma_i(\pi_g)$ be the number of cycles of π_g of length *i*.

• Set
$$\Gamma(\pi_g) = \sum \gamma_i$$
.

• Let H' be another subgroup of G, and π'_g be the permutation of G/H' given by left multiplication by g.

A Different Approach to Gassmann Equivalence

Let *H* be a subgroup of a finite group *G*.

- For $g \in G$, let π_g be the permutation of G/H given by left multiplication by g.
- Let $\gamma_i = \gamma_i(\pi_g)$ be the number of cycles of π_g of length *i*.

• Set
$$\Gamma(\pi_g) = \sum \gamma_i$$
.

• Let H' be another subgroup of G, and π'_g be the permutation of G/H' given by left multiplication by g.

A Different Approach to Gassmann Equivalence

- Let *H* be a subgroup of a finite group *G*.
- For g ∈ G, let π_g be the permutation of G/H given by left multiplication by g.
- Let $\gamma_i = \gamma_i(\pi_g)$ be the number of cycles of π_g of length *i*.
- Set $\Gamma(\pi_g) = \sum \gamma_i$.
- Let H' be another subgroup of G, and π'_g be the permutation of G/H' given by left multiplication by g.

A Different Approach to Gassmann Equivalence

- Let *H* be a subgroup of a finite group *G*.
- For g ∈ G, let π_g be the permutation of G/H given by left multiplication by g.
- Let $\gamma_i = \gamma_i(\pi_g)$ be the number of cycles of π_g of length *i*.
- Set $\Gamma(\pi_g) = \sum \gamma_i$.
- Let H' be another subgroup of G, and π'_g be the permutation of G/H' given by left multiplication by g.

A Different Approach to Gassmann Equivalence

- Let *H* be a subgroup of a finite group *G*.
- For g ∈ G, let π_g be the permutation of G/H given by left multiplication by g.
- Let $\gamma_i = \gamma_i(\pi_g)$ be the number of cycles of π_g of length *i*.

• Set
$$\Gamma(\pi_g) = \sum \gamma_i$$
.

Let H' be another subgroup of G, and π'_g be the permutation of G/H' given by left multiplication by g.

イロト イポト イヨト イヨト

A Different Approach to Gassmann Equivalence

- Let *H* be a subgroup of a finite group *G*.
- For g ∈ G, let π_g be the permutation of G/H given by left multiplication by g.
- Let $\gamma_i = \gamma_i(\pi_g)$ be the number of cycles of π_g of length *i*.
- Set $\Gamma(\pi_g) = \sum \gamma_i$.
- Let H' be another subgroup of G, and π'_g be the permutation of G/H' given by left multiplication by g.

A Different Approach to Gassmann Equivalence

Theorem

The following statements are equivalent:

- 1 H and H' are Gassmann equivalent in G.
- 2 $\gamma_1(\pi_g) = \gamma_1(\pi'_g)$ for all $g \in G$.
- $\gamma_i(\pi_g) = \gamma_i(\pi'_g)$ for all $g \in G$ and for all $i = 1, 2, \cdots, n$
- $I \Gamma(\pi_g) = \Gamma(\pi'_g) \text{ for all } g \in G.$

A Different Approach to Gassmann Equivalence

Theorem

The following statements are equivalent:

- **1** H and H' are Gassmann equivalent in G.
- 2 $\gamma_1(\pi_g) = \gamma_1(\pi'_g)$ for all $g \in G$.
- 3 γ_i(π_g) = γ_i(π'_g) for all g ∈ G and for all i = 1, 2, · · · , n.
 4 Γ(π_g) = Γ(π'_g) for all g ∈ G.

A Different Approach to Gassmann Equivalence

Theorem

The following statements are equivalent:

1 H and H' are Gassmann equivalent in G.

2
$$\gamma_1(\pi_g) = \gamma_1(\pi'_g)$$
 for all $g \in G$.

3 $\gamma_i(\pi_g) = \gamma_i(\pi'_g)$ for all $g \in G$ and for all $i = 1, 2, \cdots, n$. 4 $\Gamma(\pi_g) = \Gamma(\pi'_g)$ for all $g \in G$.

A Different Approach to Gassmann Equivalence

Theorem

The following statements are equivalent:

1 H and H' are Gassmann equivalent in G.

2
$$\gamma_1(\pi_g) = \gamma_1(\pi'_g)$$
 for all $g \in G$.

3
$$\gamma_i(\pi_g) = \gamma_i(\pi'_g)$$
 for all $g \in G$ and for all $i = 1, 2, \cdots, n$.

4 $\Gamma(\pi_g) = \Gamma(\pi'_g)$ for all $g \in G$.

A Different Approach to Gassmann Equivalence

Theorem

The following statements are equivalent:

1 H and H' are Gassmann equivalent in G.

2
$$\gamma_1(\pi_g) = \gamma_1(\pi'_g)$$
 for all $g \in G$

3 $\gamma_i(\pi_g) = \gamma_i(\pi'_g)$ for all $g \in G$ and for all $i = 1, 2, \cdots, n$.

4
$$\Gamma(\pi_g) = \Gamma(\pi'_g)$$
 for all $g \in G$.
A Different Approach to Gassmann Equivalence

The proof uses the following lemma.

Lemma For any $\sigma, \tau \in S_n$, the following are equivalent: σ and τ are conjugate in S_n . $\gamma_1(\sigma^k) = \gamma_1(\tau^k)$ for all $k = 1, 2, \dots, n$. $\gamma_i(\sigma) = \gamma_i(\tau)$ for all $i = 1, 2, \dots, n$. $\Gamma(\sigma^k) = \Gamma(\tau^k)$ for all $k = 1, 2, \dots, n$.

A Different Approach to Gassmann Equivalence

The proof uses the following lemma.

Lemma

For any $\sigma, \tau \in S_n$, the following are equivalent:

1 σ and τ are conjugate in S_n .

2
$$\gamma_1(\sigma^k) = \gamma_1(\tau^k)$$
 for all $k = 1, 2, \dots, n$.

$$\exists \gamma_i(\sigma) = \gamma_i(\tau) \text{ for all } i = 1, 2, \cdots, n.$$

4
$$\Gamma(\sigma^k) = \Gamma(\tau^k)$$
 for all $k = 1, 2, \cdots, n$.

A Different Approach to Gassmann Equivalence

The proof uses the following lemma.

Lemma

For any $\sigma, \tau \in S_n$, the following are equivalent:

- **1** σ and τ are conjugate in S_n .
- **2** $\gamma_1(\sigma^k) = \gamma_1(\tau^k)$ for all $k = 1, 2, \dots, n$.
- 3 $\gamma_i(\sigma) = \gamma_i(\tau)$ for all $i = 1, 2, \cdots, n$.
- 4 $\Gamma(\sigma^k) = \Gamma(\tau^k)$ for all $k = 1, 2, \cdots, n$.

A Different Approach to Gassmann Equivalence

The proof uses the following lemma.

Lemma

For any $\sigma, \tau \in S_n$, the following are equivalent:

1
$$\sigma$$
 and τ are conjugate in S_n .

2
$$\gamma_1(\sigma^k) = \gamma_1(\tau^k)$$
 for all $k = 1, 2, \dots, n$.

3
$$\gamma_i(\sigma) = \gamma_i(\tau)$$
 for all $i = 1, 2, \cdots, n$.

$$\Gamma(\sigma^k) = \Gamma(\tau^k) \text{ for all } k = 1, 2, \cdots, n.$$

A Different Approach to Gassmann Equivalence

The proof uses the following lemma.

Lemma

For any $\sigma, \tau \in S_n$, the following are equivalent:

1
$$\sigma$$
 and τ are conjugate in S_n .

2
$$\gamma_1(\sigma^k) = \gamma_1(\tau^k)$$
 for all $k = 1, 2, \dots, n$.

3
$$\gamma_i(\sigma) = \gamma_i(\tau)$$
 for all $i = 1, 2, \cdots, n$.

 $\Gamma(\sigma^k) = \Gamma(\tau^k) \text{ for all } k = 1, 2, \cdots, n.$

A Different Approach to Gassmann Equivalence

The proof uses the following lemma.

Lemma

For any $\sigma, \tau \in S_n$, the following are equivalent:

1
$$\sigma$$
 and τ are conjugate in S_n .

2
$$\gamma_1(\sigma^k) = \gamma_1(\tau^k)$$
 for all $k = 1, 2, \dots, n$.

3
$$\gamma_i(\sigma) = \gamma_i(\tau)$$
 for all $i = 1, 2, \cdots, n$.

4
$$\Gamma(\sigma^k) = \Gamma(\tau^k)$$
 for all $k = 1, 2, \cdots, n$.

A Different Approach to Gassmann Equivalence

Proof.

 $(4) \Rightarrow (3).$

$$\Gamma(\sigma^k) = \sum_{j=1}^n \gcd(k,j) \cdot \gamma_j(\sigma) \text{ for } k = 1, 2, \cdots, n.$$

Set $M = (m_{ij})$, where $m_{ij} = \text{gcd}(i, j)$.

 $(\Gamma(\sigma), \Gamma(\sigma^2), \dots, \Gamma(\sigma^n)) = (\gamma_1(\sigma), \gamma_2(\sigma), \dots, \gamma_n(\sigma)) \cdot M.$

A Different Approach to Gassmann Equivalence

Proof.

 $(4) \Rightarrow (3).$

$$\Gamma(\sigma^k) = \sum_{j=1}^n \gcd(k,j) \cdot \gamma_j(\sigma) \text{ for } k = 1, 2, \cdots, n.$$

Set $M = (m_{ij})$, where $m_{ij} = \text{gcd}(i, j)$.

 $(\Gamma(\sigma), \Gamma(\sigma^2), \dots, \Gamma(\sigma^n)) = (\gamma_1(\sigma), \gamma_2(\sigma), \dots, \gamma_n(\sigma)) \cdot M.$

A Different Approach to Gassmann Equivalence

Proof.

 $(4) \Rightarrow (3).$

•
$$\Gamma(\sigma^k) = \sum_{j=1}^n \gcd(k,j) \cdot \gamma_j(\sigma) \text{ for } k = 1, 2, \cdots, n.$$

Set $M = (m_{ij})$, where $m_{ij} = \text{gcd}(i, j)$.

 $(\Gamma(\sigma), \Gamma(\sigma^2), \dots, \Gamma(\sigma^n)) = (\gamma_1(\sigma), \gamma_2(\sigma), \dots, \gamma_n(\sigma)) \cdot M.$

A Different Approach to Gassmann Equivalence

Proof.

 $(4) \Rightarrow (3).$

•
$$\Gamma(\sigma^k) = \sum_{j=1}^n \gcd(k,j) \cdot \gamma_j(\sigma) \text{ for } k = 1, 2, \cdots, n.$$

Set $M = (m_{ij})$, where $m_{ij} = \text{gcd}(i, j)$.

$$(\Gamma(\sigma), \Gamma(\sigma^2), \ldots, \Gamma(\sigma^n)) = (\gamma_1(\sigma), \gamma_2(\sigma), \ldots, \gamma_n(\sigma)) \cdot M.$$

A Different Approach to Gassmann Equivalence

Proof.

 $(4) \Rightarrow (3).$

•
$$\Gamma(\sigma^k) = \sum_{j=1}^n \gcd(k,j) \cdot \gamma_j(\sigma) \text{ for } k = 1, 2, \cdots, n.$$

Set $M = (m_{ij})$, where $m_{ij} = \text{gcd}(i, j)$.

$$(\Gamma(\sigma), \Gamma(\sigma^2), \ldots, \Gamma(\sigma^n)) = (\gamma_1(\sigma), \gamma_2(\sigma), \ldots, \gamma_n(\sigma)) \cdot M.$$

A Different Approach to Gassmann Equivalence

Proof.

 $(4) \Rightarrow (3).$

•
$$\Gamma(\sigma^k) = \sum_{j=1}^n \gcd(k,j) \cdot \gamma_j(\sigma) \text{ for } k = 1, 2, \cdots, n.$$

Set $M = (m_{ij})$, where $m_{ij} = \text{gcd}(i, j)$.

$$(\Gamma(\sigma), \Gamma(\sigma^2), \ldots, \Gamma(\sigma^n)) = (\gamma_1(\sigma), \gamma_2(\sigma), \ldots, \gamma_n(\sigma)) \cdot M.$$

Reformulations of Gassmann Equivalence

Lemma

- **1** H, H' satisfy Gassmann's condition in G.
- 2 *H*, *H*['] are bijectively locally conjugate in *G*.
- **3** There exists a bijective local conjugation $\bar{\varphi} : G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.
- 4 $\mathbb{Q}[G/H] \cong \mathbb{Q}[G/H']$ as $\mathbb{Q}[G]$ -modules.
- 5 $\gamma_1(\pi_g) = \gamma_1(\pi'_g)$ for all $g \in G$.

Reformulations of Gassmann Equivalence

Lemma

- **1** H, H' satisfy Gassmann's condition in G.
- **2** H, H' are bijectively locally conjugate in G.
- **3** There exists a bijective local conjugation $\bar{\varphi} : G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.
- 4 $\mathbb{Q}[G/H] \cong \mathbb{Q}[G/H']$ as $\mathbb{Q}[G]$ -modules.
- 5 $\gamma_1(\pi_g) = \gamma_1(\pi'_g)$ for all $g \in G$.

Reformulations of Gassmann Equivalence

Lemma

- **1** H, H' satisfy Gassmann's condition in G.
- **2** H, H' are bijectively locally conjugate in G.
- 3 There exists a bijective local conjugation $\bar{\varphi} : G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.
- 4 $\mathbb{Q}[G/H] \cong \mathbb{Q}[G/H']$ as $\mathbb{Q}[G]$ -modules.
- 5 $\gamma_1(\pi_g) = \gamma_1(\pi'_g)$ for all $g \in G$.

Reformulations of Gassmann Equivalence

Lemma

Let H, H' be subgroups of a finite group G. The following statements are equivalent:

- **1** H, H' satisfy Gassmann's condition in G.
- **2** H, H' are bijectively locally conjugate in G.
- 3 There exists a bijective local conjugation $\bar{\varphi} : G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.
- 4 $\mathbb{Q}[G/H] \cong \mathbb{Q}[G/H']$ as $\mathbb{Q}[G]$ -modules.

5 $\gamma_1(\pi_g) = \gamma_1(\pi'_g)$ for all $g \in G$.

Reformulations of Gassmann Equivalence

Lemma

- **1** H, H' satisfy Gassmann's condition in G.
- **2** H, H' are bijectively locally conjugate in G.
- 3 There exists a bijective local conjugation $\bar{\varphi} : G \longrightarrow G$ such that $\bar{\varphi}(H) = H'$.
- 4 $\mathbb{Q}[G/H] \cong \mathbb{Q}[G/H']$ as $\mathbb{Q}[G]$ -modules.
- 5 $\gamma_1(\pi_g) = \gamma_1(\pi'_g)$ for all $g \in G$.

Reformulations of Gassmann Equivalence

Lemma (cont.)

- **6** coset type $[G \mod (H, C)] = coset$ type $[G \mod (H', C)]$ for any cyclic subgroup C of G.
- **7** $\Gamma(\pi_g) = \Gamma(\pi'_g)$ for all $g \in G$.
- **8** π_g and π'_g have the same cycle length sequence for all $g \in G$ (sequence of lengths of cycles in factorization of π_g and π'_g).
- *π_g* and *π'_g* have the same cycle number sequence for all g ∈ G.

 (G : H) = (G : H') = n and *π_g, π'_g* are conjugate in S_n, for all g ∈ G.

Reformulations of Gassmann Equivalence

Lemma (cont.)

6 coset type $[G \mod (H, C)] = coset$ type $[G \mod (H', C)]$ for any cyclic subgroup C of G.

7
$$\Gamma(\pi_g) = \Gamma(\pi'_g)$$
 for all $g \in G$.

8 π_g and π'_g have the same cycle length sequence for all $g \in G$ (sequence of lengths of cycles in factorization of π_g and π'_g).

2 π_g and π'_g have the same cycle number sequence for all g ∈ G.
 10 (G : H) = (G : H') = n and π_g, π'_g are conjugate in S_n, for all g ∈ G.

Reformulations of Gassmann Equivalence

Lemma (cont.)

- **6** coset type $[G \mod (H, C)] = coset$ type $[G \mod (H', C)]$ for any cyclic subgroup C of G.
- 7 $\Gamma(\pi_g) = \Gamma(\pi'_g)$ for all $g \in G$.
- **8** π_g and π'_g have the same cycle length sequence for all $g \in G$ (sequence of lengths of cycles in factorization of π_g and π'_g).
- 2 π_g and π'_g have the same cycle number sequence for all g ∈ G.
 10 (G : H) = (G : H') = n and π_g, π'_g are conjugate in S_n, for all g ∈ G.

Reformulations of Gassmann Equivalence

Lemma (cont.)

- coset type [G mod (H, C)] = coset type [G mod (H', C)] for any cyclic subgroup C of G.
- 7 $\Gamma(\pi_g) = \Gamma(\pi'_g)$ for all $g \in G$.
- S π_g and π'_g have the same cycle length sequence for all g ∈ G (sequence of lengths of cycles in factorization of π_g and π'_g).
- **9** π_g and π'_g have the same cycle number sequence for all g ∈ G. **10** (G : H) = (G : H') = n and π_g, π'_g are conjugate in S_n, for all g ∈ G.

Reformulations of Gassmann Equivalence

Lemma (cont.)

coset type [G mod (H, C)] = coset type [G mod (H', C)] for any cyclic subgroup C of G.

7
$$\Gamma(\pi_g) = \Gamma(\pi'_g)$$
 for all $g \in G$.

- **8** π_g and π'_g have the same cycle length sequence for all $g \in G$ (sequence of lengths of cycles in factorization of π_g and π'_g).
- 2 π_g and π'_g have the same cycle number sequence for all g ∈ G.
 10 (G: H) = (G: H') = n and π_g, π'_g are conjugate in S_n, for all g ∈ G.

Applications of Gassmann Equivalence

Gassmann triple (G, H, H') can be used to produce:

- pairs of number fields having identical Dedekind zeta functions.
- pairs of isospectral Riemannian manifolds.
- pairs of nonisomorphic finite graphs with identical Ihara zeta functions.

Arithmetically Equivalent Number Fields

• Order the primes \mathfrak{p}_i so that $f_i \leq f_{i+1}$.

• (f_1, f_2, \cdots, f_t) = splitting type in *K* of the prime *p*.

イロト イポト イヨト イヨト

Arithmetically Equivalent Number Fields

• Order the primes \mathfrak{p}_i so that $f_i \leq f_{i+1}$.

• (f_1, f_2, \cdots, f_t) = splitting type in *K* of the prime *p*.

イロト イポト イヨト イヨト

Arithmetically Equivalent Number Fields

• Order the primes \mathfrak{p}_i so that $f_i \leq f_{i+1}$.

• (f_1, f_2, \dots, f_t) = splitting type in *K* of the prime *p*.

Arithmetically Equivalent Number Fields

Definition

Two number fields K, K' are said to be arithmetically equivalent if each prime $p \in \mathbb{Z}$ has the same splitting type in K as in K'.

イロト イポト イヨト イヨト

Perlis' Theorem

Theorem

The following statements are equivalent:

- $1 \quad \zeta_K(s) = \zeta_{K'}(s).$
- 2 K, K' are arithmetically equivalent.
- B H and H' are Gassmann equivalent in G.

イロト イポト イヨト イヨト

Perlis' Theorem

Theorem

The following statements are equivalent:

$$\zeta_K(s) = \zeta_{K'}(s).$$

- 2 K, K' are arithmetically equivalent.
- **3** H and H' are Gassmann equivalent in G.

Perlis' Theorem

Theorem

The following statements are equivalent:

$$\zeta_K(s) = \zeta_{K'}(s).$$

- **2** K, K' are arithmetically equivalent.
- **3** H and H' are Gassmann equivalent in G.

Perlis' Theorem

Theorem

The following statements are equivalent:

- 2 K, K' are arithmetically equivalent.
- **3** H and H' are Gassmann equivalent in G.

A New Proof Stuart-Perlis Theorem

Theorem (Stuart and Perlis, 1995)

The following statements are equivalent:

- **1** *K*, *K'* are arithmetically equivalent.
- 2 Almost every prime number p has the same number of prime ideal factors in K as in K'.

A New Proof Stuart-Perlis Theorem

Theorem (Stuart and Perlis, 1995)

The following statements are equivalent:

1 K, K' are arithmetically equivalent.

2 Almost every prime number p has the same number of prime ideal factors in K as in K'.

A New Proof Stuart-Perlis Theorem

Theorem (Stuart and Perlis, 1995)

The following statements are equivalent:

- **1** K, K' are arithmetically equivalent.
- 2 Almost every prime number p has the same number of prime ideal factors in K as in K'.

A New Proof Stuart-Perlis Theorem

Proof.

$(2) \Rightarrow (1).$

- $G = Gal(N/\mathbb{Q}), H = Gal(N/K) \text{ and } H' = Gal(N/K').$
- For each prime $p \in \mathbb{Z}$ unramified in N, choose a prime \mathfrak{Q} of N lying over p.
- Let $\sigma_{\mathfrak{Q}}$ be the Frobenius automorphism of \mathfrak{Q}/p , defined by

$$\sigma_{\mathfrak{Q}}(a) \equiv a^p \mod \mathfrak{Q}$$

for all $a \in \mathcal{O}_N$.
A New Proof Stuart-Perlis Theorem

Proof.

 $(2) \Rightarrow (1).$

- $G = Gal(N/\mathbb{Q}), H = Gal(N/K) \text{ and } H' = Gal(N/K').$
- For each prime $p \in \mathbb{Z}$ unramified in *N*, choose a prime \mathfrak{Q} of *N* lying over *p*.
- Let $\sigma_{\mathfrak{Q}}$ be the Frobenius automorphism of \mathfrak{Q}/p , defined by

 $\sigma_{\mathfrak{Q}}(a) \equiv a^p \mod \mathfrak{Q}$

for all $a \in \mathcal{O}_N$.

A New Proof Stuart-Perlis Theorem

Proof.

 $(2) \Rightarrow (1).$

- $G = Gal(N/\mathbb{Q}), H = Gal(N/K) \text{ and } H' = Gal(N/K').$
- For each prime $p \in \mathbb{Z}$ unramified in *N*, choose a prime \mathfrak{Q} of *N* lying over *p*.
- Let $\sigma_{\mathfrak{Q}}$ be the Frobenius automorphism of \mathfrak{Q}/p , defined by

$$\sigma_{\mathfrak{Q}}(a) \equiv a^p \bmod \mathfrak{Q}$$

for all $a \in \mathcal{O}_N$.

A New Proof Stuart-Perlis Theorem

Proof (cont.)

- Let $K = \mathbb{Q}(\alpha)/\mathbb{Q}$ be a finite extension of number fields, N/\mathbb{Q} a Galois extension with $K \subset N$ and $G = Gal(N/\mathbb{Q})$. For any prime number *p* which is unramified in *N* the following statements are equivalent:
 - 1 *p* has splitting type (f_1, f_2, \ldots, f_t) in *K*.
 - For any prime \mathfrak{Q} of *N* lying over *p*, the Frobenius automorphism $\sigma_{\mathfrak{Q}}$ acting on the *n* conjugates of α has cycle length sequence (f_1, f_2, \dots, f_t) .

A New Proof Stuart-Perlis Theorem

Proof (cont.)

- Let $K = \mathbb{Q}(\alpha)/\mathbb{Q}$ be a finite extension of number fields, N/\mathbb{Q} a Galois extension with $K \subset N$ and $G = Gal(N/\mathbb{Q})$. For any prime number *p* which is unramified in *N* the following statements are equivalent:
 - **1** *p* has splitting type (f_1, f_2, \ldots, f_t) in *K*.
 - **2** For any prime \mathfrak{Q} of *N* lying over *p*, the Frobenius automorphism $\sigma_{\mathfrak{Q}}$ acting on the *n* conjugates of α has cycle length sequence (f_1, f_2, \dots, f_t) .

A New Proof Stuart-Perlis Theorem

- Let $K = \mathbb{Q}(\alpha)/\mathbb{Q}$ be a finite extension of number fields, N/\mathbb{Q} a Galois extension with $K \subset N$ and $G = Gal(N/\mathbb{Q})$. For any prime number *p* which is unramified in *N* the following statements are equivalent:
 - **1** *p* has splitting type (f_1, f_2, \ldots, f_t) in *K*.
 - 2 For any prime \mathfrak{Q} of *N* lying over *p*, the Frobenius automorphism $\sigma_{\mathfrak{Q}}$ acting on the *n* conjugates of α has cycle length sequence (f_1, f_2, \dots, f_t) .

A New Proof Stuart-Perlis Theorem

- It is given that $\Gamma(\pi_{\sigma_{\mathfrak{Q}}}) = \Gamma(\pi'_{\sigma_{\mathfrak{Q}}}).$
- Take $\omega \in G$.
- By Chebotarev Density Theorem, there exists a prime p unramified in N, and a prime Ω of N lying over p with σ_Ω = ω.
- So $\Gamma(\pi_{\omega}) = \Gamma(\pi'_{\omega}).$
- ω is an arbitrary.
- H and H' are Gassmann equivalent in G.
- By Perlis' theorem, K, K' are arithmetically equivalent.

A New Proof Stuart-Perlis Theorem

- It is given that $\Gamma(\pi_{\sigma_{\mathfrak{Q}}}) = \Gamma(\pi'_{\sigma_{\mathfrak{Q}}}).$
- Take $\omega \in G$.
- By Chebotarev Density Theorem, there exists a prime p unramified in N, and a prime Ω of N lying over p with σ_Ω = ω.
- So $\Gamma(\pi_{\omega}) = \Gamma(\pi'_{\omega}).$
- ω is an arbitrary.
- H and H' are Gassmann equivalent in G.
- By Perlis' theorem, K, K' are arithmetically equivalent.

A New Proof Stuart-Perlis Theorem

- It is given that $\Gamma(\pi_{\sigma_{\mathfrak{Q}}}) = \Gamma(\pi'_{\sigma_{\mathfrak{Q}}}).$
- Take $\omega \in G$.
- By Chebotarev Density Theorem, there exists a prime p unramified in N, and a prime Ω of N lying over p with σ_Ω = ω.
- So $\Gamma(\pi_{\omega}) = \Gamma(\pi'_{\omega}).$
- ω is an arbitrary.
- \blacksquare H and H' are Gassmann equivalent in G.
- By Perlis' theorem, K, K' are arithmetically equivalent.

A New Proof Stuart-Perlis Theorem

- It is given that $\Gamma(\pi_{\sigma_{\mathfrak{Q}}}) = \Gamma(\pi'_{\sigma_{\mathfrak{Q}}}).$
- Take $\omega \in G$.
- By Chebotarev Density Theorem, there exists a prime punramified in N, and a prime \mathfrak{Q} of N lying over p with $\sigma_{\mathfrak{Q}} = \omega$.
- So $\Gamma(\pi_{\omega}) = \Gamma(\pi'_{\omega}).$
- ω is an arbitrary.
- \blacksquare H and H' are Gassmann equivalent in G.
- By Perlis' theorem, *K*, *K*' are arithmetically equivalent.

A New Proof Stuart-Perlis Theorem

- It is given that $\Gamma(\pi_{\sigma_{\mathfrak{Q}}}) = \Gamma(\pi'_{\sigma_{\mathfrak{Q}}}).$
- Take $\omega \in G$.
- By Chebotarev Density Theorem, there exists a prime p unramified in N, and a prime Ω of N lying over p with σ_Ω = ω.
- So $\Gamma(\pi_{\omega}) = \Gamma(\pi'_{\omega}).$
- ω is an arbitrary.
- \blacksquare H and H' are Gassmann equivalent in G.
- By Perlis' theorem, *K*, *K*['] are arithmetically equivalent.

A New Proof Stuart-Perlis Theorem

Proof (cont.)

- It is given that $\Gamma(\pi_{\sigma_{\mathfrak{Q}}}) = \Gamma(\pi'_{\sigma_{\mathfrak{Q}}}).$
- Take $\omega \in G$.
- By Chebotarev Density Theorem, there exists a prime p unramified in N, and a prime Ω of N lying over p with σ_Ω = ω.
- So $\Gamma(\pi_{\omega}) = \Gamma(\pi'_{\omega})$.
- ω is an arbitrary.
- H and H' are Gassmann equivalent in G.

By Perlis' theorem, *K*, *K*' are arithmetically equivalent.

A New Proof Stuart-Perlis Theorem

- It is given that $\Gamma(\pi_{\sigma_{\mathfrak{Q}}}) = \Gamma(\pi'_{\sigma_{\mathfrak{Q}}}).$
- Take $\omega \in G$.
- By Chebotarev Density Theorem, there exists a prime p unramified in N, and a prime Ω of N lying over p with σ_Ω = ω.
- So $\Gamma(\pi_{\omega}) = \Gamma(\pi'_{\omega})$.
- ω is an arbitrary.
- H and H' are Gassmann equivalent in G.
- **By** Perlis' theorem, K, K' are arithmetically equivalent.

A Construction

Theorem

For every natural number n, there exist n + 1 arithmetically equivalent number fields K_0, K_1, \dots, K_n such that K_i is not isomorphic to K_j for $i \neq j$ wherel $i, j = 0, 1, \dots, n$.

Pell Equations Some Recent Results Our Result

Definition of a Pell Equation

Definition

A Pell equation is an equation of the form

$$x^2 - Dy^2 = K,$$

where D is a nonsquare positive integer and K is a nonzero integer.

Pell Equations Some Recent Results Our Result

A Quick History

Question

Why is it called a Pell equation?

It is named after John Pell (1610-1685). There is no evidence that he had ever considered solving such equations.

Lenstra (2002) wrote that Euler (1707-1783) mistakenly attributed to Pell a solution method that had in fact been found by another mathematician, William Brouncker (1601-1665).

Pell Equations Some Recent Results Our Result

A Quick History

Question

Why is it called a Pell equation?

It is named after John Pell (1610-1685). There is no evidence that he had ever considered solving such equations.

Lenstra (2002) wrote that Euler (1707-1783) mistakenly attributed to Pell a solution method that had in fact been found by another mathematician, William Brouncker (1601-1665).

Pell Equations Some Recent Results Our Result

A Quick History

Question

Why is it called a Pell equation?

It is named after John Pell (1610-1685). There is no evidence that he had ever considered solving such equations.

Lenstra (2002) wrote that *Euler (1707-1783) mistakenly attributed to Pell a solution method that had in fact been found by another mathematician, William Brouncker (1601-1665).*

Pell Equations Some Recent Results Our Result

The more common Pell equations studied are

$$x^{2} - Dy^{2} = \pm 1,$$

$$x^{2} - Dy^{2} = \pm 2,$$

$$x^{2} - Dy^{2} = \pm 4,$$

where D is a nonsquare integer.

How can one solve the equation

$$x^2 - Dy^2 = 1?$$

イロト イヨト イヨト

Pell Equations Some Recent Results Our Result

The more common Pell equations studied are

$$x^{2} - Dy^{2} = \pm 1,$$

$$x^{2} - Dy^{2} = \pm 2,$$

$$x^{2} - Dy^{2} = \pm 4,$$

where D is a nonsquare integer.

How can one solve the equation

$$x^2 - Dy^2 = 1?$$

Pell Equations Some Recent Results Our Result

Let us consider all solutions $x + y\sqrt{D}$ of the equation

 $x^2 - Dy^2 = 1,$

with positive *x* and *y*.

Among these solutions, there is a least solution $x_1 + y_1\sqrt{D}$, in which x_1 and y_1 have their least positive values. The number $x_1 + y_1\sqrt{D}$ is called the *fundamental solution* of the Pell equation.

Pell Equations Some Recent Results Our Result

Let us consider all solutions $x + y\sqrt{D}$ of the equation

 $x^2 - Dy^2 = 1,$

with positive *x* and *y*.

Among these solutions, there is a least solution $x_1 + y_1\sqrt{D}$, in which x_1 and y_1 have their least positive values. The number $x_1 + y_1\sqrt{D}$ is called the *fundamental solution* of the Pell equation.

Pell Equations Some Recent Results Our Result

Theorem 104, Nagell

Theorem

If D is a natural number which is not a perfect square, the Pell equation

$$x^2 - Dy^2 = 1$$

has infinitely many solutions $x + y\sqrt{D}$. All solutions with positive x_n and y_n are obtained by the formula

$$x_n + y_n \sqrt{D} = (x_1 + y_1 \sqrt{D})^n,$$

where $x_1 + y_1 \sqrt{D}$ is the fundamental of the Pell equation.

Pell Equations Some Recent Results Our Result

Examples

Example

The fundamental solution of $x^2 - 2y^2 = 1$ is

 $3 + 2\sqrt{2}$.

Upto sign, all the positive integer solutions are given by

$$(x + y\sqrt{2}) = (3 + 2\sqrt{2})^n,$$

with $n \ge 1$.

Pell Equations Some Recent Results Our Result

Theorem (Dossavi-Yovo, Luca, Togbe (2015))

Let $d \ge 2$ *be square-free. The Diophantine equation*

$$x_n = a\left(\frac{10^m - 1}{9}\right), \qquad m \ge 1 \text{ and } a \in \{1, \dots, 9\}$$
 (2)

has at most one positive integer solution n with the following exceptions:

1 $d = 2, n \in \{1, 3\};$ **2** $d = 3, n \in \{1, 2\}.$

Pell Equations Some Recent Results Our Result

Theorem (Faye, Luca (2015))

Let $b \ge 2$ be fixed. Let $d \ge 2$ be squarefree et let $(x_n, y_n) = (x_n(d), y_n(d))$ be the nth positive integer solution of the Pell equation $x^2 - dy^2 = 1$. If the Diophantine equation

$$x_n = a\left(\frac{b^m - 1}{b - 1}\right), \qquad m \ge 1 \text{ and } a \in \{1, \dots, b - 1\}$$
(3)

has two positive integer solutions (n, a, m), then

$$d \le \exp\left((10b)^{10^5}\right).$$

Pell Equations Some Recent Results Our Result

Let $d \ge 2$ be an integer which is not a square. Now, we consider the Pell equation

$$x^2 - dy^2 = \pm 4.$$
 (4)

Before getting to our main result, let us make some numerical observations. It is known that all positive integer solutions (x, y) of (4) are given by

$$\frac{x_n + y_n\sqrt{d}}{2} = \left(\frac{x_1 + y_1\sqrt{d}}{2}\right)^n$$

for some positive integer *n*, where (x_1, y_1) is the smallest positive integer solution.

Pell Equations Some Recent Results Our Result

Let $\{F_m\}_{m\geq 0}$ be the Fibonacci sequence.

We study when can x_n be a Fibonacci number, which reduces to the Diophantine equation

$$x_n \in \{F_m\}_{m \ge 1}.\tag{5}$$

- If m = 1, 2, then $x_n = F_m = 1$. Using equation (4), we get that $n = 1, d = 5, Y_n = 1$.
- If m = 3, then $x_n = F_m = 2$. Using equation (4), we get that $n = 1, d = 2, y_n = 2$.

Pell Equations Some Recent Results Our Result

Let $\{F_m\}_{m\geq 0}$ be the Fibonacci sequence.

We study when can x_n be a Fibonacci number, which reduces to the Diophantine equation

$$x_n \in \{F_m\}_{m \ge 1}.\tag{5}$$

- If m = 1, 2, then $x_n = F_m = 1$. Using equation (4), we get that $n = 1, d = 5, Y_n = 1$.
- If m = 3, then $x_n = F_m = 2$. Using equation (4), we get that $n = 1, d = 2, y_n = 2$.

Pell Equations Some Recent Results Our Result

Theorem (K., Luca, Togbe (2016))

Let $d \ge 2$ be a square-free integer. The Diophantine equation

$$x_n \in \{F_m\}_{m \ge 4} \tag{6}$$

has at most one solution (n, m) in positive integers. Allowing also $m \in \{1, 2, 3\}$, the above Diophantine equation still has at most one solution except for d = 2 and d = 5, cases in which

$$n \in \{1,4\}, \text{ and } n \in \{1,2\},\$$

respectively, are all the solutions of the containment (6).

The proof is made in two parts.

Pell Equations Some Recent Results Our Result

Theorem (K., Luca, Togbe (2016))

Let $d \ge 2$ be a square-free integer. The Diophantine equation

$$x_n \in \{F_m\}_{m \ge 4} \tag{6}$$

has at most one solution (n, m) in positive integers. Allowing also $m \in \{1, 2, 3\}$, the above Diophantine equation still has at most one solution except for d = 2 and d = 5, cases in which

$$n \in \{1,4\}, and n \in \{1,2\},\$$

respectively, are all the solutions of the containment (6).

The proof is made in two parts.

Pell Equations Some Recent Results Our Result

First Part: *n* is even

Write $n = 2n_1$. Since

$$x_n = x_{2n_1} = x_{n_1}^2 - 2\epsilon$$
, with $\epsilon \in \{\pm 1\}$.

Therefore, it suffices to solve the equation

$$x^2 \pm 2 = F_m$$
, where $m \ge 1$.

We obtain four elliptic curves of the form

$$v^2 = 5(u^2 \pm 2)^2 \pm 4.$$

We obtained only one acceptable solution (u, v) = (2, 16), leading us $x_n = F_m = 2 = F_3$, and $y_n = 2$.

Pell Equations Some Recent Results Our Result

First Part: *n* is even

Write $n = 2n_1$. Since

$$x_n = x_{2n_1} = x_{n_1}^2 - 2\epsilon$$
, with $\epsilon \in \{\pm 1\}$.

Therefore, it suffices to solve the equation

$$x^2 \pm 2 = F_m$$
, where $m \ge 1$.

We obtain four elliptic curves of the form

$$v^2 = 5(u^2 \pm 2)^2 \pm 4.$$

We obtained only one acceptable solution (u, v) = (2, 16), leading us $x_n = F_m = 2 = F_3$, and $y_n = 2$.

Pell Equations Some Recent Results Our Result

First Part: *n* is even

Write $n = 2n_1$. Since

$$x_n = x_{2n_1} = x_{n_1}^2 - 2\epsilon$$
, with $\epsilon \in \{\pm 1\}$.

Therefore, it suffices to solve the equation

$$x^2 \pm 2 = F_m$$
, where $m \ge 1$.

We obtain four elliptic curves of the form

$$v^2 = 5(u^2 \pm 2)^2 \pm 4.$$

We obtained only one acceptable solution (u, v) = (2, 16), leading us $x_n = F_m = 2 = F_3$, and $y_n = 2$.

Pell Equations Some Recent Results Our Result

Lemma

Assume that $X^2 - dY^2 = \pm 4$ and that $X_n = F_m$ for some even n. Then, (n, d) = (2, 5), (4, 2). Additionally, if d = 2 and d = 5, the only solutions of $X_n = F_m$ are n = 1, 4, and n = 1, 2, respectively.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Pell Equations Some Recent Results Our Result

Second Part: *n* is odd

With some simple observations, we set

$$x_1 = F_{m_1}$$
 and $x_n = F_{m_1 t}$,

where m_1 , *t* are positive integeres > 1.

We consider several techniques to bound the parameters m_1 , n.

•
$$\gamma^{m_1} < 6n^2$$
, where $\gamma = \frac{1+\sqrt{5}}{2}$.

- Then, we use a Baker's method (Matveev version) to get $n \le 2.9 \times 10^{15}$, and $m_1 \le 154$.
- To consider the remaining cases, for $m_1 \in [4, 154]$, we use the Baker-Davenport reduction method, which gives us $n < m_1 t \le 157$.

Pell Equations Some Recent Results Our Result

Second Part: *n* is odd

With some simple observations, we set

$$x_1 = F_{m_1}$$
 and $x_n = F_{m_1 t}$,

where m_1 , *t* are positive integeres > 1.

We consider several techniques to bound the parameters m_1 , n.

•
$$\gamma^{m_1} < 6n^2$$
, where $\gamma = \frac{1+\sqrt{5}}{2}$.

- Then, we use a Baker's method (Matveev version) to get $n \le 2.9 \times 10^{15}$, and $m_1 \le 154$.
- To consider the remaining cases, for $m_1 \in [4, 154]$, we use the Baker-Davenport reduction method, which gives us $n < m_1 t \le 157$.
Introduction Gassmann Equivalence Local Conjugation A Different Approach Applications to Number Fields Current Research

Thank You!

イロト イポト イヨト イヨト

B. Kafle (Purdue U. Northwest) On the Gassmann Equivalence