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Figure: Audrey and Harold

Non-isomorphic, cospectral graphs; same zeta function
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Important matrices

G = (V (G ),E (G )) is an undirected connected graph.
May have multiple edges and/or loops.
|V (G )| = n; |E (G )| = m
Label the vertices of G : v1, ..., vn

Adjacency matrix A = (aij) with

aij = number of edges between vi and vj

aii = twice the number of loops at vertex vi .

A is a symmetric matrix so it has real eigenvalues.

Degree matrix D = diag(d1, ..., dn) where di = degree of vertex vi .

di = number of neighbors of vi plus twice number of loops at vi
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Important matrices

Laplacian matrix L = D− A
L is not affected by loops
L is symmetric with row sums = 0
L is positive semidefinite so its eigenvalues µ1, ..., µn are ≥ 0.
µ1 = 0 is an eigenvalue of L with multiplicity 1.

Normalized Laplacian matrix N = D−
1
2LD−

1
2

N is symmetric
N is positive semidefinite so its eigenvalues ν1, ..., νn are ≥ 0
ν1 = 0 is an eigenvalue of N with multiplicity 1
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Spanning trees

Spanning tree of G: a connected subgraph on all the vertices of G , that
contains no closed paths (tree)

Theorem (Matrix tree theorem)

The number of spanning trees of G equals any cofactor of L.
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Ihara zeta function

Analogous to the Dedekind zeta function: for a connected graph G , the
Ihara zeta function of G is

Z (u) =
∏
[C ]

(1− u|C |)−1

where [C ] runs over all prime cycles of G and |C | is the length of C .
Prime cycles:

Starting point does not matter

Direction matters

No backtracking or tails

Primitive

Pendant edges don’t matter.
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Ihara zeta function

Theorem (Bass, 1992)

Z (u)−1 = (1− u2)m−n det(In − uA + u2(D− In))

Consequence: Z (u) is the reciprocal of a polynomial of degree 2m.
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Dedekind zeta function

The Dedekind zeta function of a number field encodes:

the degree

the discriminant

the number of roots of unity

the number of real and complex embeddings

the product of the class number and the regulator

the list of residual degrees of the extension primes
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Ihara zeta function

If G is md2 then Z (u) encodes:

the size (number of edges) m

the order (number of vertices) n

the number of loops

the girth (length of shortest closed path in G )

the number of spanning trees τ

whether the graph is regular

whether the graph is bipartite

whether the graph is a cycle

the adjacency spectrum (only for certain families of graphs, e.g.
regular, biregular-bipartite)
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Ihara zeta function

How do we construct pairs of (non-isomorphic) graphs that have the same
zeta function?

GM∗ switching: change certain edges of a graph to get a cospectral
mate (Haemers and Spence; Setyadi and Storm)

Gassmann triples: the resulting graphs appear as covers of a given
graph (Terras and Stark)

Computer search
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Wiener index

The usual distance function on a simple connected graph G :

d(vi , vj) = the length of the shortest path from vi to vj

Molecular graphs
Define the Wiener index of G as

W (G ) =
∑

1≤i<j≤n
d(vi , vj).

Modified Wiener indices:

Schultz index (1989): S(G ) =
∑

1≤i<j≤n
(di + dj)d(vi , vj)

Gutman index (1994): S∗(G ) =
∑

1≤i<j≤n
(didj)d(vi , vj).
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Resistance distance

Regard G as an electrical network with unit resistors placed on each edge.
Define the resistance distance function on G by

rij = r(vi , vj) = the effective resistance between vi to vj .

Theorem (Bapat)

The resistance distance on a simple connected graph G satisfies

rij =
detL(ij)

τ

where τ is the number of spanning trees and L(ij) is the matrix obtained
from the Laplacian by deleting its i th and j th rows and columns.
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Resistance distance - a probabilistic approach

Define a random walk on a simple connected graph G as the n-state

Markov chain with transition matrix P = (pij), where pij =
1

di
, if vertices

vi and vj are neighbors, and 0 otherwise.
The chain has a stationary distribution: π = (πi )1≤i≤n where

πi =
di

2m

Let W be the n × n matrix whose rows are all equal to π.
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Resistance distance - a probabilistic approach

Let EiTj be the expected number of steps in a walk that starts at vertex vi
and ends when first reaching vj . Then

rij =
1

2m
(EiTj + EjTi )

and

EiTj =
zjj − zij
πj

where zij are the entries of the fundamental matrix

Z = (In − P + W)−1
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Kirchhoff Index

Define the Kirchhoff index of a simple connected graph G (Klein and
Randic, 1993)

Kf (G ) =
∑

1≤i<j≤n
rij .

Theorem (Gutman and Mohar, 1996)

The Kirchhoff index of a simple connected graph G satisfies

Kf (G ) = n
n∑

i=2

1

µi

where {µ1 = 0 < µ2 ≤ ... ≤ µn} is the Laplacian spectrum of G.

complete graphs Kn: Kf = n − 1

star graphs Sn: Kf = (n − 1)2
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Modified Kirchhoff Indices

Multiplicative degree-Kirchhoff index of G (Chen, Zhang, 2007)
If d1, ..., dn are the degrees of the vertices v1, ..., vn then define

Kf ∗(G ) =
∑

1≤i<j≤n
didj rij .

Additive degree-Kirchhoff index of G (Gutman, Feng, Yu, 2012)

Kf +(G ) =
∑

1≤i<j≤n
(di + dj)rij .
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Multiplicative degree-Kirchhoff Index

Let N be the normalized Laplacian matrix of G and
ν1 = 0 < ν2 ≤ ... ≤ νn be its spectrum.

Theorem (Chen, Zhang, 2007)

The multiplicative degree-Kirchhoff index of a simple connected graph G
satisfies

Kf ∗(G ) = 2m
n∑

i=2

1

νi

Compare to:

Kf (G ) = n
n∑

i=2

1

µi
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Additive degree-Kirchhoff index

For a simple connected graph G : Palacios (2013):

Kf +(G ) =
n∑

i=1

n∑
j=1

πjEiTj +
n∑

j=1

n∑
i=1

πiEiTj .
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Revisiting the other two indices

Theorem (Palacios, Renom, 2011)

Kf ∗(G ) = 2m
n∑

j=1

πjEiTj = 2mK

where K is Kemeny’s constant.

Theorem

Kf (G ) =
1

2m

∑
i<j

(EiTj + EjTi ).
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Zeta function and Kirchhoffian indices

Question: Does the zeta function Z (u) encode Kf , Kf +, or Kf ∗?

Figure: The crab (left) and the squid (right), found by Durfee and Martin
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Kirchhoffian indices

Index Crab Squid

Kf
607

7

593

7

Kf + 9, 166

21

8, 956

21

Kf ∗
22, 843

42

22, 339

42

Table: Kirchhoffian indices
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Zeta function and graph complexity

Recall that

Z (u)−1 = (1− u2)m−n det(In − uA + u2(D− In))

Let f (u) = det(In − uA + u2(D− In)).

f (1) = det(L) = 0
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Zeta function and graph complexity

Recall that

Z (u)−1 = (1− u2)m−n det(In − uA + u2(D− In))

f (u) = det(In − uA + u2(D− In)).

Theorem (Northshield, 1998)

f ′(1) = 2(m − n)τ

Corollary (Northshield)

lim
u→1−

Z (u)(1− u)m−n+1 = − 1

2m−n+1(m − n)τ
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Second derivative of zeta function

Question: Does f ′′ contain any information about the graph?

Theorem (MS)

If f (u) = det(In − uA + u2(D− In)) then

f ′′(1) = 2(Kf z + 2mn − 2n2 + n)τ

where
Kf z =

∑
1≤i<j≤n

(di − 2)(dj − 2)rij

Kf z = the zeta Kirchhoff index of the graph.
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Zeta Kirchhoff index

Recall:
Kf =

∑
1≤i<j≤n

rij

Kf ∗ =
∑

1≤i<j≤n
didj rij

Kf + =
∑

1≤i<j≤n
(di + dj)rij

and
Kf z =

∑
1≤i<j≤n

(di − 2)(dj − 2)rij

Thus,
Kf z = Kf ∗ − 2Kf + + 4Kf
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Kirchhoffian indices of the crab and the squid

Descriptor Crab Squid

Kf
607

7

593

7

Kf + 9, 166

21

8, 956

21

Kf ∗
22, 843

42

22, 339

42

Table: Kirchhoffian indices

Both graphs have Kf z =
249

14
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Zeta Kirchhoff index

Kf z =
∑

1≤i<j≤n
(di − 2)(dj − 2)rij

If G is k-regular then
Kf z = (k − 2)2Kf

If G has loops at all vertices then

Kf z(G ) = Kf ∗(G ′)

where G ′ is obtained from G by deleting one loop from each vertex.
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Graphs with loops

Corollary

If G and H have loops at each vertex and the same Ihara zeta function
then Kf ∗(G ′) = Kf ∗(H ′), where G ′ and H ′ are the graphs obtained by
deleting one loop from each vertex.

Are there any such graphs?

Figure: Same Ihara zeta function (Czarneski)

Same Kirchhoff index (Kf = 5
3 ).
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Graphs with loops

Figure: Same Kf ∗ = 43 (and same Kf = 5
3 )
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Subdivision graphs

S(G ) obtained from G (simple) by inserting one vertex in each edge.

Theorem (Yang, 2014)

Kf (S(G )) = 2Kf (G ) + Kf +(G ) +
1

2
Kf ∗(G ) +

m2 − n2 + n

2

Theorem (Yang, Klein, 2015)

Kf +(S(G )) = 4Kf +(G ) + 4Kf ∗(G ) + (m + n)(m − n + 1) + 2m(m − n)

Theorem (Yang, Klein, 2015)

Kf ∗(S(G )) = 8Kf ∗(G ) + 2m(2m − 2n + 1)
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Subdivision graphs

Corollary (MS)

Kf z(S(G )) = 2Kf z(G )

Kf (S(G )) =
1

2
Kf z(G ) + 2Kf +(G ) +

m2 − n2 + n

2

Corollary (MS)

Let G and H have the same Ihara zeta function. Then
Kf (S(G )) = Kf (S(H)) if and only if Kf +(G ) = Kf +(H).

Are there any such graphs?
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Example

Figure: Same zeta function (Setyadi and Storm)
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Example

Setyadi and Storm’s graphs:

Index Left graph Right graph

Kf 19.70 19.75

Kf ∗ 220.4 220.2

Kf + 132.6 132.6

Table: Kirchhoffian indices

Both graphs have Kf z = 34.
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Ihara zeta function

Recall that

Kf (S(G )) =
1

2
Kf z(G ) + 2Kf +(G ) +

m2 − n2 + n

2

If G is md2 then its zeta function also encodes:

the zeta Kirchhoff index Kf z(G )

the multiplicative Kirchhoff index Kf ∗(G ′) (for graphs with loops at
all vertices)

the difference Kf (S(G ))− 2Kf +(G )
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The End
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