Zeta functions of graphs and Kirchhoffian indices

Marius Somodi

April 8, 2017

Figure: Audrey and Harold

Non-isomorphic, cospectral graphs; same zeta function

Important matrices

$G=(V(G), E(G))$ is an undirected connected graph.
May have multiple edges and/or loops.
$|V(G)|=n ;|E(G)|=m$
Label the vertices of G : v_{1}, \ldots, v_{n}

- Adjacency matrix $\mathbf{A}=\left(a_{i j}\right)$ with

$$
\begin{gathered}
a_{i j}=\text { number of edges between } v_{i} \text { and } v_{j} \\
a_{i i}=\text { twice the number of loops at vertex } v_{i} .
\end{gathered}
$$

A is a symmetric matrix so it has real eigenvalues.

- Degree matrix $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ where $d_{i}=\operatorname{degree}$ of vertex v_{i}.

$$
d_{i}=\text { number of neighbors of } v_{i} \text { plus twice number of loops at } v_{i}
$$

Important matrices

- Laplacian matrix $\mathbf{L}=\mathbf{D}-\mathbf{A}$
\mathbf{L} is not affected by loops
\mathbf{L} is symmetric with row sums $=0$
\mathbf{L} is positive semidefinite so its eigenvalues μ_{1}, \ldots, μ_{n} are ≥ 0.
$\mu_{1}=0$ is an eigenvalue of \mathbf{L} with multiplicity 1 .
- Normalized Laplacian matrix $\mathbf{N}=\mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}}$
\mathbf{N} is symmetric
\mathbf{N} is positive semidefinite so its eigenvalues ν_{1}, \ldots, ν_{n} are ≥ 0 $\nu_{1}=0$ is an eigenvalue of \mathbf{N} with multiplicity 1

Spanning trees

Spanning tree of G : a connected subgraph on all the vertices of G, that contains no closed paths (tree)

Theorem (Matrix tree theorem)
The number of spanning trees of G equals any cofactor of \mathbf{L}.

Ihara zeta function

Analogous to the Dedekind zeta function: for a connected graph G, the Ihara zeta function of G is

$$
Z(u)=\prod_{[C]}\left(1-u^{|C|}\right)^{-1}
$$

where [C] runs over all prime cycles of G and $|C|$ is the length of C. Prime cycles:

- Starting point does not matter
- Direction matters
- No backtracking or tails
- Primitive

Pendant edges don't matter.

Ihara zeta function

Theorem (Bass, 1992)

$$
Z(u)^{-1}=\left(1-u^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}+u^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right)\right)
$$

Consequence: $Z(u)$ is the reciprocal of a polynomial of degree $2 m$.

Dedekind zeta function

The Dedekind zeta function of a number field encodes:

- the degree
- the discriminant
- the number of roots of unity
- the number of real and complex embeddings
- the product of the class number and the regulator
- the list of residual degrees of the extension primes

Ihara zeta function

If G is $m d 2$ then $Z(u)$ encodes:

- the size (number of edges) m
- the order (number of vertices) n
- the number of loops
- the girth (length of shortest closed path in G)
- the number of spanning trees τ
- whether the graph is regular
- whether the graph is bipartite
- whether the graph is a cycle
- the adjacency spectrum (only for certain families of graphs, e.g. regular, biregular-bipartite)

Ihara zeta function

How do we construct pairs of (non-isomorphic) graphs that have the same zeta function?

- $G M^{*}$ switching: change certain edges of a graph to get a cospectral mate (Haemers and Spence; Setyadi and Storm)
- Gassmann triples: the resulting graphs appear as covers of a given graph (Terras and Stark)
- Computer search

Wiener index

The usual distance function on a simple connected graph G :

$$
d\left(v_{i}, v_{j}\right)=\text { the length of the shortest path from } v_{i} \text { to } v_{j}
$$

Molecular graphs
Define the Wiener index of G as

$$
W(G)=\sum_{1 \leq i<j \leq n} d\left(v_{i}, v_{j}\right)
$$

Modified Wiener indices:

- Schultz index (1989): $S(G)=\sum_{1 \leq i<j \leq n}\left(d_{i}+d_{j}\right) d\left(v_{i}, v_{j}\right)$
- Gutman index (1994): $S^{*}(G)=\sum_{1 \leq i<j \leq n}\left(d_{i} d_{j}\right) d\left(v_{i}, v_{j}\right)$.

Resistance distance

Regard G as an electrical network with unit resistors placed on each edge. Define the resistance distance function on G by

$$
r_{i j}=r\left(v_{i}, v_{j}\right)=\text { the effective resistance between } v_{i} \text { to } v_{j} .
$$

Theorem (Bapat)

The resistance distance on a simple connected graph G satisfies

$$
r_{i j}=\frac{\operatorname{det} \mathbf{L}^{(i j)}}{\tau}
$$

where τ is the number of spanning trees and $\mathbf{L}^{(i j)}$ is the matrix obtained from the Laplacian by deleting its $i^{\text {th }}$ and $j^{\text {th }}$ rows and columns.

Resistance distance - a probabilistic approach

Define a random walk on a simple connected graph G as the n-state Markov chain with transition matrix $\mathbf{P}=\left(p_{i j}\right)$, where $p_{i j}=\frac{1}{d_{i}}$, if vertices v_{i} and v_{j} are neighbors, and 0 otherwise.
The chain has a stationary distribution: $\pi=\left(\pi_{i}\right)_{1 \leq i \leq n}$ where

$$
\pi_{i}=\frac{d_{i}}{2 m}
$$

Let \mathbf{W} be the $n \times n$ matrix whose rows are all equal to π.

Resistance distance - a probabilistic approach

Let $E_{i} T_{j}$ be the expected number of steps in a walk that starts at vertex v_{i} and ends when first reaching v_{j}. Then

$$
r_{i j}=\frac{1}{2 m}\left(E_{i} T_{j}+E_{j} T_{i}\right)
$$

and

$$
E_{i} T_{j}=\frac{z_{j j}-z_{i j}}{\pi_{j}}
$$

where $z_{i j}$ are the entries of the fundamental matrix

$$
\mathbf{Z}=\left(\mathbf{I}_{n}-\mathbf{P}+\mathbf{W}\right)^{-1}
$$

Kirchhoff Index

Define the Kirchhoff index of a simple connected graph G (Klein and Randic, 1993)

$$
K f(G)=\sum_{1 \leq i<j \leq n} r_{i j}
$$

Theorem (Gutman and Mohar, 1996)

The Kirchhoff index of a simple connected graph G satisfies

$$
K f(G)=n \sum_{i=2}^{n} \frac{1}{\mu_{i}}
$$

where $\left\{\mu_{1}=0<\mu_{2} \leq \ldots \leq \mu_{n}\right\}$ is the Laplacian spectrum of G.

- complete graphs K_{n} : $K f=n-1$
- star graphs $S_{n}: K f=(n-1)^{2}$

Modified Kirchhoff Indices

Multiplicative degree-Kirchhoff index of G (Chen, Zhang, 2007) If d_{1}, \ldots, d_{n} are the degrees of the vertices v_{1}, \ldots, v_{n} then define

$$
K f^{*}(G)=\sum_{1 \leq i<j \leq n} d_{i} d_{j} r_{i j}
$$

Additive degree-Kirchhoff index of G (Gutman, Feng, Yu, 2012)

$$
K f^{+}(G)=\sum_{1 \leq i<j \leq n}\left(d_{i}+d_{j}\right) r_{i j}
$$

Multiplicative degree-Kirchhoff Index

Let \mathbf{N} be the normalized Laplacian matrix of G and $\nu_{1}=0<\nu_{2} \leq \ldots \leq \nu_{n}$ be its spectrum.

Theorem (Chen, Zhang, 2007)

The multiplicative degree-Kirchhoff index of a simple connected graph G satisfies

$$
K f^{*}(G)=2 m \sum_{i=2}^{n} \frac{1}{\nu_{i}}
$$

Compare to:

$$
K f(G)=n \sum_{i=2}^{n} \frac{1}{\mu_{i}}
$$

Additive degree-Kirchhoff index

For a simple connected graph G : Palacios (2013):

$$
K f^{+}(G)=\sum_{i=1}^{n} \sum_{j=1}^{n} \pi_{j} E_{i} T_{j}+\sum_{j=1}^{n} \sum_{i=1}^{n} \pi_{i} E_{i} T_{j}
$$

Revisiting the other two indices

Theorem (Palacios, Renom, 2011)

$$
K f^{*}(G)=2 m \sum_{j=1}^{n} \pi_{j} E_{i} T_{j}=2 m K
$$

where K is Kemeny's constant.
Theorem

$$
K f(G)=\frac{1}{2 m} \sum_{i<j}\left(E_{i} T_{j}+E_{j} T_{i}\right) .
$$

Zeta function and Kirchhoffian indices

Question: Does the zeta function $Z(u)$ encode $K f, K f^{+}$, or $K f^{*}$?

Figure: The crab (left) and the squid (right), found by Durfee and Martin

Kirchhoffian indices

Index	Crab	Squid
$K f$	$\frac{607}{7}$	$\frac{593}{7}$
$K f^{+}$	$\frac{9,166}{21}$	$\frac{8,956}{21}$
$K f^{*}$	$\frac{22,843}{42}$	$\frac{22,339}{42}$

Table: Kirchhoffian indices

Zeta function and graph complexity

Recall that

$$
Z(u)^{-1}=\left(1-u^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}+u^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right)\right)
$$

Let $f(u)=\operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}+u^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right)\right)$.

$$
f(1)=\operatorname{det}(L)=0
$$

Zeta function and graph complexity

Recall that

$$
Z(u)^{-1}=\left(1-u^{2}\right)^{m-n} \operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}+u^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right)\right)
$$

$f(u)=\operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}+u^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right)\right)$.
Theorem (Northshield, 1998)

$$
f^{\prime}(1)=2(m-n) \tau
$$

Corollary (Northshield)

$$
\lim _{u \rightarrow 1^{-}} Z(u)(1-u)^{m-n+1}=-\frac{1}{2^{m-n+1}(m-n) \tau}
$$

Second derivative of zeta function

Question: Does $f^{\prime \prime}$ contain any information about the graph?

Theorem (MS)

If $f(u)=\operatorname{det}\left(\mathbf{I}_{n}-u \mathbf{A}+u^{2}\left(\mathbf{D}-\mathbf{I}_{n}\right)\right)$ then

$$
f^{\prime \prime}(1)=2\left(K f^{z}+2 m n-2 n^{2}+n\right) \tau
$$

where

$$
K f^{z}=\sum_{1 \leq i<j \leq n}\left(d_{i}-2\right)\left(d_{j}-2\right) r_{i j}
$$

$K f^{z}=$ the zeta Kirchhoff index of the graph.

Zeta Kirchhoff index

Recall:

$$
\begin{gathered}
K f=\sum_{1 \leq i<j \leq n} r_{i j} \\
K f^{*}=\sum_{1 \leq i<j \leq n} d_{i} d_{j} r_{i j} \\
K f^{+}=\sum_{1 \leq i<j \leq n}\left(d_{i}+d_{j}\right) r_{i j}
\end{gathered}
$$

and

$$
K f^{z}=\sum_{1 \leq i<j \leq n}\left(d_{i}-2\right)\left(d_{j}-2\right) r_{i j}
$$

Thus,

$$
K f^{z}=K f^{*}-2 K f^{+}+4 K f
$$

Kirchhoffian indices of the crab and the squid

Descriptor	Crab	Squid
$K f$	$\frac{607}{7}$	$\frac{593}{7}$
$K f^{+}$	$\frac{9,166}{21}$	$\frac{8,956}{21}$
$K f^{*}$	$\frac{22,843}{42}$	$\frac{22,339}{42}$

Table: Kirchhoffian indices

Both graphs have $K f^{z}=\frac{249}{14}$

Zeta Kirchhoff index

$$
K f^{z}=\sum_{1 \leq i<j \leq n}\left(d_{i}-2\right)\left(d_{j}-2\right) r_{i j}
$$

If G is k-regular then

$$
K f^{z}=(k-2)^{2} K f
$$

If G has loops at all vertices then

$$
K f^{z}(G)=K f^{*}\left(G^{\prime}\right)
$$

where G^{\prime} is obtained from G by deleting one loop from each vertex.

Graphs with loops

Corollary

If G and H have loops at each vertex and the same Ihara zeta function then $K f^{*}\left(G^{\prime}\right)=K f^{*}\left(H^{\prime}\right)$, where G^{\prime} and H^{\prime} are the graphs obtained by deleting one loop from each vertex.

Are there any such graphs?

Figure: Same Ihara zeta function (Czarneski)
Same Kirchhoff index $\left(K f=\frac{5}{3}\right)$.

Graphs with loops

Figure: Same $K f^{*}=43$ (and same $K f=\frac{5}{3}$)

Subdivision graphs

$S(G)$ obtained from G (simple) by inserting one vertex in each edge.
Theorem (Yang, 2014)

$$
K f(S(G))=2 K f(G)+K f^{+}(G)+\frac{1}{2} K f^{*}(G)+\frac{m^{2}-n^{2}+n}{2}
$$

Theorem (Yang, Klein, 2015)

$$
K f^{+}(S(G))=4 K f^{+}(G)+4 K f^{*}(G)+(m+n)(m-n+1)+2 m(m-n)
$$

Theorem (Yang, Klein, 2015)

$$
K f^{*}(S(G))=8 K f^{*}(G)+2 m(2 m-2 n+1)
$$

Subdivision graphs

Corollary (MS)

$$
\begin{gathered}
K f^{z}(S(G))=2 K f^{z}(G) \\
K f(S(G))=\frac{1}{2} K f^{z}(G)+2 K f^{+}(G)+\frac{m^{2}-n^{2}+n}{2}
\end{gathered}
$$

Corollary (MS)

Let G and H have the same Ihara zeta function. Then $K f(S(G))=K f(S(H))$ if and only if $K f^{+}(G)=K f^{+}(H)$.

Are there any such graphs?

Example

Figure: Same zeta function (Setyadi and Storm)

Example

Setyadi and Storm's graphs:

Index	Left graph	Right graph
$K f$	19.70	19.75
$K f^{*}$	220.4	220.2
$K f^{+}$	132.6	132.6
Table: Kirchhoffian indices		

Both graphs have $K f^{z}=34$.

Ihara zeta function

Recall that

$$
K f(S(G))=\frac{1}{2} K f^{z}(G)+2 K f^{+}(G)+\frac{m^{2}-n^{2}+n}{2}
$$

If G is $m d 2$ then its zeta function also encodes:

- the zeta Kirchhoff index $K f^{z}(G)$
- the multiplicative Kirchhoff index $K f^{*}\left(G^{\prime}\right)$ (for graphs with loops at all vertices)
- the difference $K f(S(G))-2 K f^{+}(G)$

The End

