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Notation

Fq := finite field, with q a power of a prime p

A := Fq[t], the polynomial ring in the variable t over Fq

k := Fq(θ) = rational functions in the variable θ over Fq

k∞ := Fq((1/θ)), the completion of k with respect to | · |∞
k∞ = algebraic closure of k∞

k := the algebraic closure of k in k∞

K := completion of k∞

T := the Tate algebra of K[[t]] on the closed unit disk

L := fraction field of T
GLr/F := for the field F , the F -group scheme of invertible r × r matrices.
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For f ∈ K and i ≥ 1, we define

σi (f ) = f 1/q
i

:= f (−i)

We set τ = σ−1, that is

τ i (f ) = f q
i

:= f (i)

for all f ∈ K and i ≥ 1

Definition

Let t be a variable over Fq independent from θ. We define k(t)[σ, σ−1] to
be the polynomial ring in t and σ subject to the relations

at = ta, σt = tσ, σa = a1/qσ, a ∈ k

Changningphaabi Namoijam (TAMU) Hyperderivatives of Periods of Drinfeld Modules and Transcendence SRNTC 4 / 16



t-motives

Definition

A pre-t-motive M is a left k(t)[σ, σ−1]-module that is finite dimensional
over k(t).

Picking {m1, . . . ,mr} a k(t)-basis of M, we set m = [m1, . . . ,mr ]>.

There is a matrix Φ ∈ GLr (k(t)) such that

σm = Φm

M is rigid analytically trivial if there exists Ψ ∈ GLr (L) so that

ΦΨ = Ψ(−1)

For f ⊗m ∈ L⊗k(t) M, we define

σ(f ⊗m) = f (−1) ⊗ σm

We let MB be the Fq(t)-subspace fixed by σ.
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The category of rigid analytically trivial pre-t-motives, denoted by R,
is a neutral Tannakian Category over Fq(t) with fiber functor
M 7→ MB .

For M ∈ R, we denote by RM , the strictly full Tannakian
subcategory generated by M.
Then,

RM ≈ Rep(ΓM ,Fq(t))

that is, RM is equivalent to the category of representations over
Fq(t) of an affine group scheme ΓM over Fq(t).
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Definition

An Anderson t-motive is a left k[t, σ]-module M such that

M is free and finitely generated as a k[t]-module;

M is free and finitely generated as a k[σ]-module;

(t − θ)s
(
M/σM

)
= {0} for some s ∈ N.

The functor
M 7→ k(t)⊗k[t]M

from Anderson t-motives to pre-t-motives is fully faithful.
We denote by T , the strictly full Tannakian subcategory of R
generated by the essential image of rigid analytically trivial Anderson
t-motives under the above functor. We call an element of T , a
t-motive.

Theorem (Papanikolas, 2008)

Let M be a t-motive and ΓM be its Galois Group. If Φ represents
multiplication by σ on M and Ψ its rigid analytic trivialization, then
tr.degkk(Ψ(θ)) = dim ΓM
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Anderson t-modules

Definition

A t-module over k is an Fq-linear homomorphism φ : A→ Matd(k[τ ]) with

φt = B0 + B1τ + · · ·+ B`τ
`

where Bi ∈ Matd(k) with ` > 0 and B0 = (θId + N) where Id is the d × d
identity matrix and N is a nilpotent matrix.

For every t-module φ, there exists a unique exponential function

Expφ : Matd×1(K)→ Matd×1(K)

where Expφ :=
∑∞

h=0 Chτ
h ∈ Matd(K[[τ ]]) satisfying

Expφ
(
B0z

)
= φ(t)Expφ

(
z
)

and C0 = Id

If Expφ is surjective, then we say that φ is uniformizable.

A t-module with d = 1 is called a Drinfeld Module.
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We denote by Λφ, the kernel of Expφ, which is a discrete and finitely

generated Fq[θ]-submodule of Kd .

Definition

For u ∈ Kd , we define the Anderson generating function for φ to be

Gu(t) :=
∞∑
n=0

Expφ(B
−(n+1)
0 u)tn ∈ Mat1×d(K[[t]])
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Let ρ be a Drinfeld module over k such that

ρ(t) = θ + κ1τ + · · ·+ κr−1τ
r−1 + τ r

r is the rank of ρ. We define a rigid analytically trivial Anderson t-motive
associated to ρ in the following way:

We let Mρ be isomorphic to (k[t])r .

if {m1, . . . ,mr} ⊂ Mρ is the standard basis, we define multiplication
by σ on [m1 . . .mr ]> by

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

(t − θ) −κ(−1)1 . . . −κ−r+1
r−1


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Let {λ1, . . . , λr} be an Fq[θ]-basis of Λρ.

If we let fu(t) denote the Anderson generating function for ρ, then
the rigid analytic trivialization matrix is

Ψρ = V−1(Υ(1))−1

where V =


κ1 κ

(−1)
2 . . . κ

(−r+2)
r−1 1

κ2 κ
(−1)
3 . . . 1

...
...

κr−1 1
1

 and

Υ =


f1 f

(1)
1 . . . f

(r−1)
1

f2 f
(1)
2 . . . f

(r−1)
2

...
...

fr f
(1)
r . . . f

(r−1)
r

 with fλi (t) denoted by fi (t).

We let Mρ := k(t)⊗k[t]Mρ be the pre-t-motive associated to Mρ.
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Theorem (Chang, Papanikolas, 2012)

Let ρ be a Drinfeld module of rank r defined over k. Set Kρ := EndT (Mρ)
and define CentGLr/Fq(t)(Kρ) to be the algebraic group over Fq(t) such
that for any Fq(t)-algebra R,

CentGLr/Fq(t)(Kρ) := {γ ∈ GLr (R) | γg = gγ for all g ∈ R ⊗Fq(t) Kρ}

Then, ΓMρ = CentGLr/Fq(t)(Kρ).

Here Kρ embeds naturally into Matr (Fq(t)). So, R ⊗Fq(t) Kρ ⊂ Matr (R).
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Hyperderivatives and Hyperdifferential operators

For m, j ≥ 0, we let (
−m
j

)
= (−1)j

(
m + j − 1

j

)

Definition
Let F be a field with characteristic p > 0. For j ≥ 0, we define the j-th
hyperdifferential operator with respect to t

∂jt : F ((t))→ F ((t))

to be the F -linear map on laurent series satisfying

∂jt(t
m) =

(
m

j

)
tm−j

where m ∈ Z.

For f ∈ F ((t)), we call ∂jt(f ) the hyperderivative of f with respect to t.

Changningphaabi Namoijam (TAMU) Hyperderivatives of Periods of Drinfeld Modules and Transcendence SRNTC 13 / 16



(Due to Maurischat, 2017) Let ρ be a Drinfeld module. Then, we
define a t-module Pρ given by

Pρ(t) =

(
ρ(t) 0
−1 ρ(t)

)
For Φρ and Ψρ corresponding to Mρ, the Anderson t-motive
associated with ρ, we have

ΦPρ =

(
Φρ ∂1t (Φρ)
0 Φρ

)
and

ΨPρ =

(
Ψρ ∂1t (Ψρ)
0 Ψρ

)
where we take entrywise hyperderivative, corresponding to the
Anderson t-motive N of Pρ.
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Theorem (N.)

Let ρ be a Drinfeld module of rank r defined over k and Pρ be its first
prolongation t-module. If Mρ and N are the t-motives corresponding to ρ
and Pρ respectively, then dim ΓN = 2 · dim ΓMρ .

ΓN
∼= ΓMρ nW with W ⊂

{(
1 b
0 1

) ∣∣∣∣∣ b ∈ CentMatr/Fq(t)
(Kρ)

}
We show W =

{(
1 b
0 1

)
| b ∈ CentMatr/Fq(t)

(Kρ)

}
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THANK YOU!
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