Hyperderivatives of Periods of Drinfeld Modules and Transcendence

Changningphaabi Namoijam

Texas A&M University

Southern Regional Number Theory Conference Louisiana State University 13 April 2019

SRNTC 1 / 16

Notation

 $\mathbb{F}_q :=$ finite field, with q a power of a prime p $A := \mathbb{F}_{q}[t]$, the polynomial ring in the variable t over \mathbb{F}_{q} $k := \mathbb{F}_{q}(\theta)$ = rational functions in the variable θ over \mathbb{F}_{q} $k_{\infty} := \mathbb{F}_q((1/\theta))$, the completion of k with respect to $|\cdot|_{\infty}$ $\overline{k_{\infty}}$ = algebraic closure of k_{∞} \overline{k} := the algebraic closure of k in $\overline{k_{\infty}}$ $\mathbb{K} := \text{completion of } \overline{k_{\infty}}$ $\mathbb{T} :=$ the Tate algebra of $\mathbb{K}[t]$ on the closed unit disk $\mathbb{L} :=$ fraction field of \mathbb{T}

 $GL_r/F :=$ for the field *F*, the *F*-group scheme of invertible $r \times r$ matrices.

A B F A B F

• For $f \in \mathbb{K}$ and $i \geq 1$, we define

$$\sigma^{i}(f) = f^{1/q^{i}} := f^{(-i)}$$

• We set $\tau = \sigma^{-1}$, that is

$$\tau^i(f) = f^{q^i} := f^{(i)}$$

for all $f \in \mathbb{K}$ and $i \geq 1$

Definition

Let t be a variable over \mathbb{F}_q independent from θ . We define $\overline{k}(t)[\sigma, \sigma^{-1}]$ to be the polynomial ring in t and σ subject to the relations

$$at = ta, \ \sigma t = t\sigma, \ \sigma a = a^{1/q}\sigma, \ a \in \overline{k}$$

t-motives

Definition

A pre-t-motive M is a left $\overline{k}(t)[\sigma, \sigma^{-1}]$ -module that is finite dimensional over $\overline{k}(t)$.

- Picking $\{m_1, \ldots, m_r\}$ a $\overline{k}(t)$ -basis of M, we set $\boldsymbol{m} = [m_1, \ldots, m_r]^\top$.
- There is a matrix $\Phi \in \mathsf{GL}_r(\overline{k}(t))$ such that

$\sigma \boldsymbol{m} = \boldsymbol{\Phi} \boldsymbol{m}$

• *M* is *rigid analytically trivial* if there exists $\Psi \in \mathsf{GL}_r(\mathbb{L})$ so that

$$\Phi\Psi=\Psi^{(-1)}$$

• For $f \otimes m \in \mathbb{L} \otimes_{\overline{k}(t)} M$, we define

$$\sigma(f\otimes m)=f^{(-1)}\otimes \sigma m$$

We let M^B be the $\mathbb{F}_q(t)$ -subspace fixed by σ .

- The category of rigid analytically trivial pre-t-motives, denoted by *R*, is a neutral Tannakian Category over F_q(t) with fiber functor M → M^B.
- For *M* ∈ *R*, we denote by *R_M*, the strictly full Tannakian subcategory generated by *M*. Then,

$$\mathcal{R}_M \approx \operatorname{Rep}(\Gamma_M, \mathbb{F}_q(t))$$

that is, \mathcal{R}_M is equivalent to the category of representations over $\mathbb{F}_q(t)$ of an affine group scheme Γ_M over $\mathbb{F}_q(t)$.

Definition

An Anderson t-motive is a left $\overline{k}[t,\sigma]$ -module \mathcal{M} such that

- \mathcal{M} is free and finitely generated as a $\overline{k}[t]$ -module;
- \mathcal{M} is free and finitely generated as a $\overline{k}[\sigma]$ -module;

•
$$(t- heta)^{s}(\mathcal{M}/\sigma\mathcal{M}) = \{0\}$$
 for some $s \in \mathbb{N}$.

The functor

$$\mathcal{M}\mapsto \overline{k}(t)\otimes_{\overline{k}[t]}\mathcal{M}$$

from Anderson *t*-motives to pre-*t*-motives is fully faithful.

We denote by *T*, the strictly full Tannakian subcategory of *R* generated by the essential image of rigid analytically trivial Anderson *t*-motives under the above functor. We call an element of *T*, a *t*-motive.

Theorem (Papanikolas, 2008)

Let M be a t-motive and Γ_M be its Galois Group. If Φ represents multiplication by σ on M and Ψ its rigid analytic trivialization, then $tr.deg_{\overline{k}}\overline{k}(\Psi(\theta)) = \dim \Gamma_M$

Changningphaabi Namoijam (TAMU) Hyperderivatives of Periods of Drinfeld Modu

Anderson *t*-modules

Definition

A *t*-module over \overline{k} is an \mathbb{F}_q -linear homomorphism $\phi : A \to Mat_d(\overline{k}[\tau])$ with

$$\phi_t = B_0 + B_1 \tau + \dots + B_\ell \tau^\ell$$

where $B_i \in Mat_d(\overline{k})$ with $\ell > 0$ and $B_0 = (\theta I_d + N)$ where I_d is the $d \times d$ identity matrix and N is a nilpotent matrix.

• For every *t*-module ϕ , there exists a unique exponential function

 $\mathsf{Exp}_{\phi}:\mathsf{Mat}_{d imes 1}(\mathbb{K}) o\mathsf{Mat}_{d imes 1}(\mathbb{K})$

where $\operatorname{Exp}_{\phi} := \sum_{h=0}^{\infty} C_h \tau^h \in \operatorname{Mat}_d(\mathbb{K}\llbracket\tau\rrbracket)$ satisfying $\operatorname{Exp}_{\phi}(B_0 z) = \phi(t) \operatorname{Exp}_{\phi}(z)$ and $C_0 = I_d$

If Exp_φ is surjective, then we say that φ is *uniformizable*.
A *t*-module with d = 1 is called a *Drinfeld Module*.

 We denote by Λ_φ, the kernel of Exp_φ, which is a discrete and finitely generated 𝔽_q[θ]-submodule of 𝗮^d.

Definition

For $\boldsymbol{u} \in \mathbb{K}^d$, we define the Anderson generating function for ϕ to be

$$G_{\boldsymbol{u}}(t) := \sum_{n=0}^{\infty} \mathsf{Exp}_{\phi}(B_0^{-(n+1)}\boldsymbol{u})t^n \in \mathsf{Mat}_{1 \times d}(\mathbb{K}\llbracket t \rrbracket)$$

Let ρ be a Drinfeld module over \overline{k} such that

$$\rho(t) = \theta + \kappa_1 \tau + \dots + \kappa_{r-1} \tau^{r-1} + \tau^r$$

r is the rank of ρ . We define a rigid analytically trivial Anderson *t*-motive associated to ρ in the following way:

- We let \mathcal{M}_{ρ} be isomorphic to $(\overline{k}[t])^r$.
- if $\{m_1, \ldots, m_r\} \subset \mathcal{M}_\rho$ is the standard basis, we define multiplication by σ on $[m_1 \ldots m_r]^\top$ by

$$egin{pmatrix} 0 & 1 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & 1 \ (t- heta) & -\kappa_1^{(-1)} & \dots & -\kappa_{r-1}^{-r+1} \end{pmatrix}$$

- Let $\{\lambda_1, \ldots, \lambda_r\}$ be an $\mathbb{F}_q[\theta]$ -basis of Λ_{ρ} .
- If we let f_u(t) denote the Anderson generating function for ρ, then the rigid analytic trivialization matrix is

$$\Psi_{\rho} = V^{-1}(\Upsilon^{(1)})^{-1}$$
where $V = \begin{pmatrix} \kappa_1 & \kappa_2^{(-1)} & \dots & \kappa_{r-1}^{(-r+2)} & 1 \\ \kappa_2 & \kappa_3^{(-1)} & \dots & 1 \\ \vdots & \vdots & & & \\ \kappa_{r-1} & 1 & & & \end{pmatrix}$ and
$$\Upsilon = \begin{pmatrix} f_1 & f_1^{(1)} & \dots & f_1^{(r-1)} \\ f_2 & f_2^{(1)} & \dots & f_2^{(r-1)} \\ \vdots & \vdots & & \\ f_r & f_r^{(1)} & \dots & f_r^{(r-1)} \end{pmatrix}$$
 with $f_{\lambda_i}(t)$ denoted by $f_i(t)$.
• We let $M_{\rho} := \overline{k}(t) \otimes_{\overline{k}[t]} \mathcal{M}_{\rho}$ be the pre-t-motive associated to \mathcal{M}_{ρ} .

Theorem (Chang, Papanikolas, 2012)

Let ρ be a Drinfeld module of rank r defined over \overline{k} . Set $\mathcal{K}_{\rho} := End_{\mathcal{T}}(M_{\rho})$ and define $Cent_{GL_r/\mathbb{F}_q(t)}(\mathcal{K}_{\rho})$ to be the algebraic group over $\mathbb{F}_q(t)$ such that for any $\mathbb{F}_q(t)$ -algebra R,

$$\operatorname{Cent}_{GL_r/\mathbb{F}_q(t)}(\mathcal{K}_\rho) := \{ \gamma \in \operatorname{GL}_r(R) \mid \gamma g = g\gamma \text{ for } all \ g \in R \otimes_{\mathbb{F}_q(t)} \mathcal{K}_\rho \}$$

Then, $\Gamma_{M_{\rho}} = Cent_{GL_r/\mathbb{F}_q(t)}(\mathcal{K}_{\rho}).$

Here \mathcal{K}_{ρ} embeds naturally into $\operatorname{Mat}_{r}(\mathbb{F}_{q}(t))$. So, $R \otimes_{\mathbb{F}_{q}(t)} \mathcal{K}_{\rho} \subset \operatorname{Mat}_{r}(R)$.

Hyperderivatives and Hyperdifferential operators

For $m, j \ge 0$, we let

$$\binom{-m}{j} = (-1)^j \binom{m+j-1}{j}$$

Definition

Let *F* be a field with characteristic p > 0. For $j \ge 0$, we define the *j*-th hyperdifferential operator with respect to t

$$\partial_t^j: F((t)) \to F((t))$$

to be the F-linear map on laurent series satisfying

$$\partial_t^j(t^m) = \binom{m}{j} t^{m-j}$$

where $m \in \mathbb{Z}$.

For $f \in F((t))$, we call $\partial_t^j(f)$ the hyperderivative of f with respect to t.

• (Due to Maurischat, 2017) Let ρ be a Drinfeld module. Then, we define a *t*-module P ρ given by

$$\mathsf{P}
ho(t) = egin{pmatrix}
ho(t) & 0 \ -1 &
ho(t) \end{pmatrix}$$

• For Φ_{ρ} and Ψ_{ρ} corresponding to \mathcal{M}_{ρ} , the Anderson *t*-motive associated with ρ , we have

$$\Phi_{\mathsf{P}
ho} = egin{pmatrix} \Phi_{
ho} & \partial_t^1(\Phi_{
ho}) \ 0 & \Phi_{
ho} \end{pmatrix}$$

and

$$\Psi_{\mathsf{P}
ho} = egin{pmatrix} \Psi_{
ho} & \partial_t^1(\Psi_{
ho}) \ 0 & \Psi_{
ho} \end{pmatrix}$$

where we take entrywise hyperderivative, corresponding to the Anderson *t*-motive \mathcal{N} of P ρ .

Theorem (N.)

Let ρ be a Drinfeld module of rank r defined over \overline{k} and $P\rho$ be its first prolongation t-module. If M_{ρ} and N are the t-motives corresponding to ρ and $P\rho$ respectively, then dim $\Gamma_N = 2 \cdot \dim \Gamma_{M_{\rho}}$.

.

•
$$\Gamma_N \cong \Gamma_{M_{\rho}} \ltimes W$$
 with $W \subset \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \operatorname{Cent}_{\operatorname{Mat}_{r/\mathbb{F}_q(t)}}(\mathcal{K}_{\rho}) \right\}$
• We show $W = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \operatorname{Cent}_{\operatorname{Mat}_{r/\mathbb{F}_q(t)}}(\mathcal{K}_{\rho}) \right\}$

THANK YOU!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・