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Multiple zeta values in Classical Setting

Definition
For positive integers sy, ...,s, with s; > 2, the multiple zeta value
¢(s1,...,sr) is defined by Euler as the following infinite sum:

1
C(S]_,...,Sr) = Z WER
ny>--->n>1 1o

v

o In the definition, r is called the depth and >_;_; s; is called the weight
of the multiple zeta value.

@ It is clear from the definition that {(s1,...,s,) is non-zero.

o (Euler's Reflection Formula) For any si,s, > 1, we have

C(s1,52) + ((52,51) = ((51)¢(52) — C(51 + 52).
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Some Notations for Function Field Setting

q := a positive power of a prime p
Fg := finite field with g elements
A:=TFq0]
A, := the set of monic polynomials of A
AL 4 := the set of monic polynomials of A of degree d
K :=TF4(#) = rational functions in the variable 6 over F,
Koo :=Fg((1/0)) = oo-adic completion of K
Cw := completion of the algebraic closure of K,

| |, := the co-adic norm on C,, normalized so that 0| = ¢
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The Non-Commutative Rings R{{7}} and R{7}

Definition
Let R be an [F4-algebra and 7 : R — R be an F4-algebra homomorphism.
We define the twisted power series ring R{{7}} by the rule

7 =f97, VfER,

and the twisted polynomial ring R{7} is a subring.

@ The ring R{7} operates on R by setting for
A=by+-+br" €R{r}and f € R,

A(F) = bof + byr(F) + -+ + b, (F).
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The Carlitz Module

Definition

The Carlitz module C (over A) is the Fg-algebra homomorphism
o A— A{7}

defined by
Cp=0+r. (1.1)

v

@ As a function Gy : Coo — Co, we define Cp(x) = 0x + x9 for all x € C.

@ It also gives an A-module structure on C., defined as
a-x = G(x)

forallae Aand x € C..
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The Polylogarithm Function

@ Letlp=1and {;:=(0—69)...(0— Hqi) for i > 1. The logarithm series
corresponding to C is defined by

oge =3 %Tf € K{{r}}
jz0

so that 79 = 1 and log: C, = alog for all a € A. It induces to the
logarithm function log. : Coo — C4 which is defined by

1 .
| =) 27
og¢(2) Z Ejz
j=0
for all x € C within the radius of convergence of log.

@ For any n € N, the n-th polylogarithm function log,, : Coc — C4 is defined
by
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Power Sums

@ For integers d,n > 0, the power sum Sy(n) is defined by

1
S = —.
(- Y L
a€A+’d
e For any integer n > 1, the Carlitz-Goss zeta value (c(n) is given by
= 1
Cem =35 = Y -
d=0

acAL

@ We define Dy :=1 and D; = (Hqi — G)Df’_l for i > 1. Moreover, for
any positive integer n, assume that n =73 2, niq' is the g-adic
expansion of n. We define the Carlitz factorial T, by

o0
Myi= H D
i=0
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Anderson-Thakur Polynomials

Theorem (Anderson, Thakur, 1990)

For any integer n > 0, there exists a unique polynomial H,(t) € A[t] such
that for any d > 0 we have

Moreover, deg,(Hn) < ™.

Theorem (Anderson, Thakur, 1990)

For any integer n > 0, there exist elements h; € A such that

1 & .
Cc(n) = T Z hjlog,, c(¢/).
n =0
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Multiple zeta values on Function Fields

@ (Thakur) For any r-tuple (si,...,s;) € Z>q, we define the multiple zeta
value (c(si,...,s/) by
Ce(sty-ovns) = Z Sd(s1) - .- Sa(sr) (21)
di>dy>--->d, >0
1
deg(ar)>deg(az)>-+->deg(a,)>0 L
acAL
o We call {c(s1,--.,s:) the multiple zeta value of depth r and weight Y ;_; s;.
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Some Properties of Multiple zeta values
Theorem (Thakur, 2009)

The multiple zeta value (c(s1,...,s;), with s; > 0 is always non-zero. J

The sum-shuffle identity as in Euler’s reflection formula fails in general.
But Thakur proved the following identity.

Theorem (Thakur, 2009)
When s1,s5 < q and s; + s» > g we have

Cc(s1)Cc(s2) = Ce(s1 + s2) + Cc(s1, 52) + Cc(s2, 51)
+(s1t+s2—q)lc(a+b—-qg+1,qg-1).

Theorem (Thakur, 2010)

The product of multiple zeta values can be written as an IF,- linear
combination of some multiple zeta values. In particular, the F,-vector
space generated by multiple zeta values is an IF,-algebra.

v
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Carlitz Multiple Polylogarithms

Definition
For any given r-tuple (si,...,s;) € Z>o, we define its associated Carlitz
multiple polylogarithm as

i ir
, s A
L|51’“_75r(2]_, ooy Zr) = W
ii>>i>0 T

Theorem (Chang, 2014)

Let S be the set of points u = (uy, ..., u;) € A" where uj is any coefficient
of the polynomial Hs,(t) € A[t] for any j € {1,...,r}. Foranyu €S, let
uj be the coefficient of t™i in Hsj(t) and let a, := [[;_, 0™. Then we have

Cc(sl, ce Sr) Z duy L|51,52, St U)

" ues

v
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Introduction to Tate Algebras

o Ts ={> ay.u ity -t € Coo[[tr, ..., ta]l | |avswlo =

0 as v+ +vs— o0}

o We define the Gauss norm || - || on Ts by setting for
f=> ay.pt] -t eTs,

1| == sup{lav, vl - ¥ € Z0}.

We note that T is complete with respect to || - ||
@ We define an automorphism 7 : Ts — Ts by

1Z% 1 o V1
r(E ENN ---t;) = E a,‘jl,,,,,st1

vi>0 v;i>0
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Twisted Power Sums over Tate Algebras

@ For integers d, n > 0, the power sum Sy(ty, ..., ts; n) is defined by
a(ty)...a(ts)
S cotsin) = —_ =7
a(ty,..., ts;n) Z o
acA, q

@ Set by(t;) := 1. For any integer i > 1, we introduce elements b;(t;) by

i—1
bi(ty) == [ (5 —67).
k=0
Theorem (Demeslay, 2015)

For any integer n > 0 and r € Z>1 such that q" > n, there exists a unique
polynomial Q,(t) € T,[t] such that for any d > 0 we have

Sd(tl,...,ts;n): Z a(tl)...a(ts)_ bd(tl)...bd(fs) Td(Qn(t))|t=0o

an 0T (t) . b ()00

a€Ay q

ng—s
Moreover, ||Qn(t)|| < g1 .
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Pellarin L-series and Polylogarithm Functions over Tate

Algebras

@ For any integer N > 1, Pellarin L-series L(t1,...,ts; N) is defined by

L(ty,. ..t N) =Y MGTS.

acA,

@ Let z be an independent variable over C., and f be an element in Ts. In a

similar way to the definition of log, ., we define

bi(t ...b;tszi i
logy ,(f) = Z %T (f) € Tsta.
i>0 i

where Tg;1 is the Tate algebra with variables ti, ..., ts, z.

@ Furthermore, we set
log (f) :== |°gN,z(f)\z:1~
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Analogue of Anderson and Thakur's Result

Theorem (Angles, Pellarin, Tavares Ribeiro, 2018)
For all integers N € Z, s > 1 and r > 1 such that q" > N, there exists an integer

m >0, and for 0 < j < m, polynomials hj(z) € Alt1, ..., ts][z] such that
= d Z a(tl)...a(ts) _ 1 Zejl
D,z = ogu, (k). (41)
d=0 acA. 4 aV é?—ler(tl) e (ts =

Corollary

The equality (4.1) implies

L(tl,...,ts;N):Z%

acA;
B 1
6 Nbo (1) . be(ts) 4

Zw ogn (1))
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Multiple zeta values over Tate Algebras

@ Let > be a subset of Z>1 and for some r € N and for 1 </ <rr,
Ui C X be the subsets such that ¥ = LI7_; U;. Moreover, let Ty be
the Tate algebra with variables t; for j € X.

o Let Fg[X] be the polynomial ring in t; for j € ¥ with coefficients in
Fy. Define the function oy, : Ay — Fq[X] by

ou(a) =[] a(t)
ieU;

forany a € A;.

e For any integer d, n > 0, we set Sy(U;, n) as the the following twisted

power sum:

Sq(n, U;) = Z 70,(2) = HieU,- bd(ti)-Td(QU,-,n(t))h:ea

an o
aGA#d d

where Qu, »(t) € Tx[t] and the last equality follows from Demeslay’s

result.
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@ Forany s; € N and for all 1 </ < r let us set the composition array C

as
Co— (UUI,O'UN..-,O'U,). (5-1)
1,52, 5
Definition (Pellarin)

For any C as in (5.1), we define multiple zeta values over Tate algebras as
the following object:

E oy (a1)ouy,(a2)...ou,(ar)
CC(C) = 1 351252 - \9r
deg(a1)>deg(az)>--->deg(a;)>0 18y ...ar

3i€A+

= Z S,'I(Sl, Ul) .. .S,-,(s,, Ur) € Ts.

i >i>-->ir>0
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Some Properties of Multiple zeta values over Tate algebras
Theorem (Pellarin, 2017)

The multiple zeta value (c(C) where C as in (5.1) is always non-zero. J

We also have some sum-shuffle identities in this setting.
Theorem (Pellarin, 2017)
The following formula holds, for all ¥ C Z>; and UL V = X¥:

e (V)ee((7)) ~ee((3)) =<((47)) + e ("5:57))
- 2 «(()

[J|=1  (mod g—1)
JCU orJCcV

where |J| denotes the number of elements in J.

@ Furthermore, Pellarin showed that for any set > C Z>1, the F,-vector space
generated by multiple zeta values is an [F,-algebra.
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Multiple Polylogarithms over Tate Algebras

Remark

At this point, the natural direction would be understanding the multiple
polylogarithms in this new setting.

Definition

For any i,d € N, set by(U;) := [[;c, ba(t;). For any r-tuple
(A,...,f) € T’Z’t, we set

. Tilf ...Ti’frb,' U ...b,'r Ur
L'sl,...,sr(fla e fr) o Z ( 1) §§1) 125r1) ( )
PIRERE

i1>0p>->ir >0

as the multiple polylogarithms for multiple zeta values over Tate algebras.
v
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Theorem

Let S be the set of points u = (u1,...,u,) € TS where uj is any
coefficient of the polynomial Qu; s.(t) € Tx[t] for any j € {1,...,r}. For
any u € S, let u; be the coefficient of t™ in Qu; s (t) and let

r

By = HQ"’".

i=1
We define rs, > 1 as the smallest integer such that s; < q"i. Then we have

(c(a"”a“””"au’) = S 3y Lig o0, (1),
- —s u 51,52,-++,S
5155255 Sr [1- 1€r 1 ’brs(U ues
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Some Examples

Example

@ Define X ={1,2,...,r} and let U; = {i} forany 1 </ < r. Then

CC OU»OUys--+50U, o Z al(tl)...a,(t,)
171a"'71 3?332...3?'
deg(a1)>deg(az)>--->deg(a,)>0
ai€AL

=Li(1,1,...,1).

@ Let ¥ and U; be as in the previous example and 1 < s; < g for any
1 <i<r. Then we have

CC((OUI,O'UZ,...,(7U,>) . Z al(tl)...a,(t,)

- S1 .52 Sy

SilgPgooon§ dyay ...a

L9 =20 o deg(a;)>deg(az)>--->deg(a,)>0 192 r
€A,

:Li(t1—9,t2—9,...,ts—0).
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Oguz Gezmis (TAMU)

THANK YOU !
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