Multiple Polylogarithms over Tate Algebras

Oğuz Gezmiş joint work with F. Pellarin

Texas A&M University

Southern Regional Number Theory Conference Louisiana State University 13 April 2019

Multiple zeta values in Classical Setting

Definition

For positive integers s_1, \ldots, s_r with $s_1 \ge 2$, the multiple zeta value $\zeta(s_1, \ldots, s_r)$ is defined by Euler as the following infinite sum:

$$\zeta(s_1,\ldots,s_r):=\sum_{n_1>\cdots>n_r\geq 1}\frac{1}{n_1^{s_1}\ldots n_r^{s_r}}\in\mathbb{R}.$$

- In the definition, r is called the *depth* and $\sum_{i=1}^{r} s_i$ is called the *weight* of the multiple zeta value.
- It is clear from the definition that $\zeta(s_1,\ldots,s_r)$ is non-zero.
- (Euler's Reflection Formula) For any $s_1, s_2 > 1$, we have

$$\zeta(s_1, s_2) + \zeta(s_2, s_1) = \zeta(s_1)\zeta(s_2) - \zeta(s_1 + s_2).$$

Some Notations for Function Field Setting

```
q := a positive power of a prime p
  \mathbb{F}_q := finite field with q elements
    A := \mathbb{F}_q[\theta]
  A_{+}:= the set of monic polynomials of A
A_{+,d} := the set of monic polynomials of A of degree d
    K := \mathbb{F}_q(\theta) = rational functions in the variable \theta over \mathbb{F}_q
 \mathbb{K}_{\infty} := \mathbb{F}_q((1/\theta)) = \infty-adic completion of K
 \mathbb{C}_{\infty} := \text{completion of the algebraic closure of } \mathbb{K}_{\infty}
|\cdot|_{\infty}:= the \infty-adic norm on \mathbb{C}_{\infty}, normalized so that |\theta|_{\infty}=q
```

The Non-Commutative Rings $R\{\{\tau\}\}$ and $R\{\tau\}$

Definition

Let R be an \mathbb{F}_q -algebra and $\tau:R\to R$ be an \mathbb{F}_q -algebra homomorphism. We define the twisted power series ring $R\{\{\tau\}\}$ by the rule

$$\tau f = f^q \tau, \quad \forall f \in R,$$

and the twisted polynomial ring $R\{\tau\}$ is a subring.

• The ring $R\{\tau\}$ operates on R by setting for $\Delta = b_0 + \cdots + b_r \tau^r \in R\{\tau\}$ and $f \in R$,

$$\Delta(f) = b_0 f + b_1 \tau(f) + \cdots + b_r \tau^r(f).$$

The Carlitz Module

Definition

The Carlitz module C (over A) is the \mathbb{F}_q -algebra homomorphism

$$\phi: A \to A\{\tau\}$$

defined by

$$C_{\theta} = \theta + \tau. \tag{1.1}$$

- As a function $C_{\theta}: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$, we define $C_{\theta}(x) = \theta x + x^q$ for all $x \in \mathbb{C}_{\infty}$.
- ullet It also gives an A-module structure on \mathbb{C}_{∞} defined as

$$a \cdot x = C_a(x)$$

for all $a \in A$ and $x \in \mathbb{C}_{\infty}$.

The Polylogarithm Function

• Let $\ell_0 = 1$ and $\ell_i := (\theta - \theta^q) \dots (\theta - \theta^{q^i})$ for $i \ge 1$. The logarithm series corresponding to C is defined by

$$\log_{\mathcal{C}} = \sum_{j \geq 0} \frac{1}{\ell_j} \tau^j \in \mathcal{K}\{\{\tau\}\}$$

so that $\gamma_0=1$ and $\log_{\mathcal{C}}\mathcal{C}_a=a\log_{\mathcal{C}}$ for all $a\in A$. It induces to the logarithm function $\log_{\mathcal{C}}:\mathbb{C}_\infty\to\mathbb{C}_\infty$ which is defined by

$$\log_C(z) = \sum_{j \ge 0} \frac{1}{\ell_j} z^{q^j}$$

for all $x \in \mathbb{C}_{\infty}$ within the radius of convergence of \log_{ϕ} .

• For any $n \in \mathbb{N}$, the *n-th polylogarithm function* $\log_n : \mathbb{C}_\infty \to \mathbb{C}_\infty$ is defined by

$$\log_{n,C}(z) = \sum_{j\geq 0} \frac{1}{\ell_j^n} z^{q^j}.$$

Power Sums

• For integers $d, n \ge 0$, the power sum $S_d(n)$ is defined by

$$S_d(n) := \sum_{a \in A_{+,d}} \frac{1}{a^n}.$$

• For any integer $n \ge 1$, the Carlitz-Goss zeta value $\zeta_C(n)$ is given by

$$\zeta_C(n) = \sum_{d=0}^{\infty} S_d(n) = \sum_{a \in A_+} \frac{1}{a^n}.$$

• We define $D_0 := 1$ and $D_i = (\theta^{q^i} - \theta)D_{i-1}^q$ for $i \ge 1$. Moreover, for any positive integer n, assume that $n = \sum_{i=0}^{\infty} n_i q^i$ is the q-adic expansion of n. We define the Carlitz factorial Γ_n by

$$\Gamma_n := \prod_{i=0}^{\infty} D_i^{n_i}.$$

Anderson-Thakur Polynomials

Theorem (Anderson, Thakur, 1990)

For any integer $n \geq 0$, there exists a unique polynomial $H_n(t) \in A[t]$ such that for any $d \geq 0$ we have

$$S_d(n) = \sum_{a \in A_{+,d}} \frac{1}{a^n} = \frac{1}{\Gamma_n} \cdot \frac{H_n(\theta^{q^d})}{\ell_d^n}.$$

Moreover, $\deg_t(H_n) < \frac{nq}{q-1}$.

Theorem (Anderson, Thakur, 1990)

For any integer $n \ge 0$, there exist elements $h_j \in A$ such that

$$\zeta_{C}(n) = \frac{1}{\Gamma_{n}} \sum_{j=0}^{m} h_{j} \log_{n,C}(\theta^{j}).$$

Multiple zeta values on Function Fields

• (Thakur) For any r-tuple $(s_1, \ldots, s_r) \in \mathbb{Z}_{\geq 0}$, we define the multiple zeta value $\zeta_{\mathcal{C}}(s_1,\ldots,s_r)$ by

$$\zeta_C(s_1, \dots, s_r) = \sum_{d_1 > d_2 > \dots > d_r \ge 0} S_d(s_1) \dots S_d(s_r)$$
(2.1)

$$= \sum_{\substack{\deg(a_1)>\deg(a_2)>\cdots>\deg(a_r)\geq 0\\a_i\in A_+}} \frac{1}{a_1^{s_1}\ldots a_r^{s_r}} \in \mathbb{K}_{\infty}. \tag{2.2}$$

• We call $\zeta_C(s_1,\ldots,s_r)$ the multiple zeta value of depth r and weight $\sum_{i=1}^r s_i$.

Some Properties of Multiple zeta values

Theorem (Thakur, 2009)

The multiple zeta value $\zeta_C(s_1,\ldots,s_r)$, with $s_i>0$ is always non-zero.

The sum-shuffle identity as in Euler's reflection formula fails in general. But Thakur proved the following identity.

Theorem (Thakur, 2009)

When $s_1, s_2 \le q$ and $s_1 + s_2 > q$ we have

$$\zeta_C(s_1)\zeta_C(s_2) = \zeta_C(s_1 + s_2) + \zeta_C(s_1, s_2) + \zeta_C(s_2, s_1) + (s_1 + s_2 - q)\zeta_C(a + b - q + 1, q - 1).$$

Theorem (Thakur, 2010)

The product of multiple zeta values can be written as an \mathbb{F}_p - linear combination of some multiple zeta values. In particular, the \mathbb{F}_p -vector space generated by multiple zeta values is an \mathbb{F}_p -algebra.

Carlitz Multiple Polylogarithms

Definition

For any given r-tuple $(s_1, \ldots, s_r) \in \mathbb{Z}_{\geq 0}$, we define its associated *Carlitz multiple polylogarithm* as

$$\operatorname{Li}_{s_1,\ldots,s_r}(z_1,\ldots,z_r) = \sum_{i_1>\cdots>i_r\geq 0} \frac{z_1^{q^{i_1}}\ldots z_r^{q^{i_r}}}{\ell_{i_1}^{s_1}\ldots\ell_{i_r}^{s_r}}.$$

Theorem (Chang, 2014)

Let S be the set of points $u=(u_1,\ldots,u_r)\in A^r$ where u_j is any coefficient of the polynomial $H_{s_j}(t)\in A[t]$ for any $j\in\{1,\ldots,r\}$. For any $u\in S$, let u_j be the coefficient of t^{m_j} in $H_{s_j}(t)$ and let $a_u:=\prod_{i=1}^r \theta^{m_i}$. Then we have

$$\zeta_{\mathcal{C}}(s_1,\ldots,s_r) = \frac{1}{\Gamma_{s_1}\ldots\Gamma_{s_r}}\sum_{u\in\mathcal{S}}a_u\operatorname{Li}_{s_1,s_2,\ldots,s_r}(u).$$

Introduction to Tate Algebras

- $\mathbb{T}_s = \{\sum a_{\nu_1 \cdots \nu_s} t_1^{\nu_1} \cdots t_s^{\nu_s} \in \mathbb{C}_{\infty}[[t_1, \dots, t_n]] \mid |a_{\nu_1 \cdots \nu_s}|_{\infty} \rightarrow 0 \text{ as } \nu_1 + \dots + \nu_s \rightarrow \infty\}$
- We define the Gauss norm $\|\cdot\|$ on \mathbb{T}_s by setting for $f=\sum a_{\nu_1\cdots\nu_s}t_1^{\nu_1}\cdots t_s^{\nu_s}\in\mathbb{T}_s$,

$$||f|| := \sup\{|a_{\nu_1\cdots\nu_s}|_{\infty} : \nu \in \mathbb{Z}^s_{\geqslant 0}\}.$$

We note that \mathbb{T}_s is complete with respect to $\|\cdot\|$.

ullet We define an automorphism $au: \mathbb{T}_s o \mathbb{T}_s$ by

$$\tau\bigg(\sum_{\nu_i\geq 0}a_{\nu_1\cdots\nu_s}t_1^{\nu_1}\cdots t_s^{\nu_s}\bigg):=\sum_{\nu_i\geq 0}a_{\nu_1\cdots\nu_s}^qt_1^{\nu_1}\cdots t_s^{\nu_s}.$$

Twisted Power Sums over Tate Algebras

• For integers $d, n \ge 0$, the power sum $S_d(t_1, \ldots, t_s; n)$ is defined by

$$S_d(t_1,\ldots,t_s;n):=\sum_{a\in A_{+,d}}\frac{a(t_1)\ldots a(t_s)}{a^n}.$$

• Set $b_0(t_j) := 1$. For any integer $i \ge 1$, we introduce elements $b_i(t_j)$ by

$$b_i(t_j):=\prod_{k=0}^{i-1}(t_j-\theta^{q^k}).$$

Theorem (Demeslay, 2015)

For any integer $n \geq 0$ and $r \in \mathbb{Z}_{\geq 1}$ such that $q^r \geq n$, there exists a unique polynomial $Q_n(t) \in \mathbb{T}_n[t]$ such that for any $d \geq 0$ we have

$$S_d(t_1, \ldots, t_s; n) = \sum_{a \in A_{+,d}} \frac{a(t_1) \ldots a(t_s)}{a^n} = \frac{b_d(t_1) \ldots b_d(t_s)}{\ell_{r-1}^{r-n} b_r(t_1) \ldots b_r(t_s) \ell_d^n} \cdot \tau^d(Q_n(t))|_{t=\theta}.$$

Moreover, $||Q_n(t)|| < q^{\frac{nq-s}{q-1}}$.

Pellarin *L*-series and Polylogarithm Functions over Tate Algebras

• For any integer $N \ge 1$, Pellarin L-series $L(t_1, \ldots, t_s; N)$ is defined by

$$L(t_1,\ldots,t_s;N):=\sum_{a\in A_+}rac{a(t_1)\ldots a(t_s)}{a^N}\in\mathbb{T}_s.$$

• Let z be an independent variable over \mathbb{C}_{∞} and f be an element in \mathbb{T}_s . In a similar way to the definition of $\log_{n,C}$, we define

$$\log_{N,z}(f) = \sum_{i>0} \frac{b_i(t_1)\dots b_i(t_s)z^i}{\ell_i^N} \tau^i(f) \in \mathbb{T}_{s+1}.$$

where \mathbb{T}_{s+1} is the Tate algebra with variables t_1, \ldots, t_s, z .

• Furthermore, we set

$$\log_N(f) := \log_{N,z}(f)_{|z=1}.$$

Analogue of Anderson and Thakur's Result

Theorem (Anglès, Pellarin, Tavares Ribeiro, 2018)

For all integers $N \in \mathbb{Z}$, $s \ge 1$ and $r \ge 1$ such that $q^r \ge N$, there exists an integer $m \ge 0$, and for $0 \le j \le m$, polynomials $h_j(z) \in A[t_1, \ldots, t_s][z]$ such that

$$\sum_{d=0}^{\infty} z^d \sum_{a \in A_{+,d}} \frac{a(t_1) \dots a(t_s)}{a^N} = \frac{1}{\ell_{r-1}^{q^r-N} b_r(t_1) \dots b_r(t_s)} \sum_{j=0}^m \theta^j \log_{N,z}(h_j).$$
 (4.1)

Corollary

The equality (4.1) implies

$$L(t_1,\ldots,t_s;N) = \sum_{a\in A_+} \frac{a(t_1)\ldots a(t_s)}{a^N}$$

$$= \frac{1}{\ell_{r-1}^{q^r-N}b_r(t_1)\ldots b_r(t_s)} \sum_{i=0}^m \theta^i \log_N(h_i(1)).$$

Multiple zeta values over Tate Algebras

- Let Σ be a subset of $\mathbb{Z}_{\geq 1}$ and for some $r \in \mathbb{N}$ and for $1 \leq i \leq r$, $U_i \subset \Sigma$ be the subsets such that $\Sigma = \sqcup_{i=1}^r U_i$. Moreover, let \mathbb{T}_{Σ} be the Tate algebra with variables t_j for $j \in \Sigma$.
- Let $\mathbb{F}_q[\Sigma]$ be the polynomial ring in t_j for $j \in \Sigma$ with coefficients in \mathbb{F}_q . Define the function $\sigma_{U_i}: A_+ \to \mathbb{F}_q[\Sigma]$ by

$$\sigma_{U_i}(a) := \prod_{i \in U_i} a(t_i)$$

for any $a \in A_+$.

• For any integer $d, n \ge 0$, we set $S_d(U_i, n)$ as the the following twisted power sum:

$$S_d(n,U_i):=\sum_{a\in A_{+d}}\frac{\sigma_{U_i}(a)}{a^n}=\frac{\prod_{i\in U_i}b_d(t_i)}{\ell_d^n}.\tau^d(Q_{U_i,n}(t))_{|t=\theta},$$

where $Q_{U_i,n}(t) \in \mathbb{T}_{\Sigma}[t]$ and the last equality follows from Demeslay's result.

• For any $s_i \in \mathbb{N}$ and for all $1 \leq i \leq r$ let us set the composition array \mathcal{C} as

$$C := \begin{pmatrix} \sigma_{U_1}, \sigma_{U_2}, \dots, \sigma_{U_r} \\ s_1, s_2, \dots, s_r \end{pmatrix}. \tag{5.1}$$

Definition (Pellarin)

For any \mathcal{C} as in (5.1), we define multiple zeta values over Tate algebras as the following object:

$$\zeta_{\mathcal{C}}(\mathcal{C}) := \sum_{\substack{\deg(a_1) > \deg(a_2) > \dots > \deg(a_r) \geq 0 \\ a_i \in A_+}} \frac{\sigma_{U_1}(a_1)\sigma_{U_2}(a_2)\dots\sigma_{U_r}(a_r)}{a_1^{s_1}a_2^{s_2}\dots a_r^{s_r}}$$

$$= \sum_{\substack{i_1 > i_2 > \dots > i_r > 0}} S_{i_1}(s_1, U_1)\dots S_{i_r}(s_r, U_r) \in \mathbb{T}_{\Sigma}.$$

Some Properties of Multiple zeta values over Tate algebras

Theorem (Pellarin, 2017)

The multiple zeta value $\zeta_{\mathcal{C}}(\mathcal{C})$ where \mathcal{C} as in (5.1) is always non-zero.

We also have some sum-shuffle identities in this setting.

Theorem (Pellarin, 2017)

The following formula holds, for all $\Sigma \subset \mathbb{Z}_{>1}$ and $U \sqcup V = \Sigma$:

$$\zeta_{C} \begin{pmatrix} \begin{pmatrix} \sigma_{U} \\ 1 \end{pmatrix} \end{pmatrix} \zeta_{C} \begin{pmatrix} \begin{pmatrix} \sigma_{V} \\ 1 \end{pmatrix} \end{pmatrix} - \zeta_{C} \begin{pmatrix} \begin{pmatrix} \sigma_{\Sigma} \\ 2 \end{pmatrix} \end{pmatrix} = \zeta_{C} \begin{pmatrix} \begin{pmatrix} \sigma_{U}, \sigma_{V} \\ 1, 1 \end{pmatrix} \end{pmatrix} + \zeta_{C} \begin{pmatrix} \begin{pmatrix} \sigma_{V}, \sigma_{U} \\ 1, 1 \end{pmatrix} \end{pmatrix}$$

$$- \sum_{\substack{I \sqcup J = \Sigma \\ J \subseteq U \text{ or } J \subseteq V}} \zeta_{C} \begin{pmatrix} \begin{pmatrix} \sigma_{I}, \sigma_{J} \\ 1, 1 \end{pmatrix} \end{pmatrix}.$$

where |J| denotes the number of elements in J.

• Furthermore, Pellarin showed that for any set $\Sigma \subset \mathbb{Z}_{\geq 1}$, the \mathbb{F}_p -vector space generated by multiple zeta values is an \mathbb{F}_p -algebra.

Multiple Polylogarithms over Tate Algebras

Remark

At this point, the natural direction would be understanding the multiple polylogarithms in this new setting.

Definition

For any $i,d\in\mathbb{N}$, set $b_d(U_i):=\prod_{j\in U_i}b_d(t_j)$. For any r-tuple $(f_1,\ldots,f_r)\in\mathbb{T}_{\Sigma,t}^r$, we set

$$\mathsf{Li}_{s_1,\ldots,s_r}(f_1,\ldots,f_r) := \sum_{i_1 > i_2 > \cdots > i_r \ge 0} \frac{\tau^{i_1}(f_1)\ldots\tau^{i_r}(f_r)b_{i_1}(U_1)\ldots b_{i_r}(U_r)}{\ell^{s_1}_{i_1}\ldots\ell^{s_r}_{i_r}}$$

as the multiple polylogarithms for multiple zeta values over Tate algebras.

Theorem

Let S be the set of points $u=(u_1,\ldots,u_r)\in\mathbb{T}^r_\Sigma$ where u_j is any coefficient of the polynomial $Q_{U_j,s_j}(t)\in\mathbb{T}_\Sigma[t]$ for any $j\in\{1,\ldots,r\}$. For any $u\in S$, let u_j be the coefficient of t^{m_j} in $Q_{U_j,s_j}(t)$ and let

$$a_u := \prod_{i=1}^r \theta^{m_i}.$$

We define $r_{s_i} \geq 1$ as the smallest integer such that $s_i \leq q^{r_{s_i}}$. Then we have

$$\zeta_{C}\binom{\sigma_{U_{1}},\sigma_{U_{2}},\ldots,\sigma_{U_{r}}}{s_{1},s_{2},\ldots,s_{r}} = \frac{1}{\prod_{i=1}^{r} \ell_{r_{s_{i}}-1}^{q^{r_{s_{i}}}-s_{i}} b_{r_{s_{i}}}(U_{i})} \sum_{u \in S} a_{u} \operatorname{Li}_{s_{1},s_{2},\ldots,s_{r}}(u).$$

Some Examples

Example

• Define $\Sigma = \{1, 2, ..., r\}$ and let $U_i = \{i\}$ for any $1 \le i \le r$. Then

$$\begin{split} \zeta_{\mathcal{C}}\bigg(\binom{\sigma_{\mathcal{U}_1},\sigma_{\mathcal{U}_2},\ldots,\sigma_{\mathcal{U}_r}}{1,1,\ldots,1}\bigg)\bigg) &= \sum_{\substack{\deg(a_1)>\deg(a_2)>\cdots>\deg(a_r)\geq 0\\a_i\in A_+}} \frac{a_1(t_1)\ldots a_r(t_r)}{a_1^{s_1}a_2^{s_2}\ldots a_r^{s_r}} \\ &= \mathsf{Li}(1,1,\ldots,1). \end{split}$$

• Let Σ and U_i be as in the previous example and $1 < s_i \le q$ for any $1 \le i \le r$. Then we have

$$\zeta_{C}\left(\begin{pmatrix}\sigma_{U_{1}},\sigma_{U_{2}},\ldots,\sigma_{U_{r}}\\s_{1},s_{2},\ldots,s_{r}\end{pmatrix}\right) = \sum_{\substack{\deg(a_{1})>\deg(a_{2})>\cdots>\deg(a_{r})\geq 0\\a_{i}\in A_{+}}} \frac{a_{1}(t_{1})\ldots a_{r}(t_{r})}{a_{1}^{s_{1}}a_{2}^{s_{2}}\ldots a_{r}^{s_{r}}}$$

$$= \operatorname{Li}(t_{1}-\theta,t_{2}-\theta,\ldots,t_{s}-\theta).$$

THANK YOU!