Zeta functions of graphs and Kirchhoffian indices

Marius Somodi

April 8, 2017
Figure: Audrey and Harold

Non-isomorphic, cospectral graphs; same zeta function
Important matrices

$G = (V(G), E(G))$ is an undirected connected graph.
May have multiple edges and/or loops.
$|V(G)| = n; |E(G)| = m$
Label the vertices of G: $v_1, ..., v_n$

- **Adjacency matrix** $A = (a_{ij})$ with

 $$a_{ij} = \text{number of edges between } v_i \text{ and } v_j$$
 $$a_{ii} = \text{twice the number of loops at vertex } v_i.$$

 A is a symmetric matrix so it has real eigenvalues.

- **Degree matrix** $D = \text{diag}(d_1, ..., d_n)$ where $d_i = \text{degree of vertex } v_i$.

 $$d_i = \text{number of neighbors of } v_i \text{ plus twice number of loops at } v_i.$$
Important matrices

- **Laplacian matrix** \(L = D - A \)
 - \(L \) is not affected by loops
 - \(L \) is symmetric with row sums = 0
 - \(L \) is positive semidefinite so its eigenvalues \(\mu_1, ..., \mu_n \) are \(\geq 0 \).
 - \(\mu_1 = 0 \) is an eigenvalue of \(L \) with multiplicity 1.

- **Normalized Laplacian matrix** \(N = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} \)
 - \(N \) is symmetric
 - \(N \) is positive semidefinite so its eigenvalues \(\nu_1, ..., \nu_n \) are \(\geq 0 \)
 - \(\nu_1 = 0 \) is an eigenvalue of \(N \) with multiplicity 1.
Spanning trees

Spanning tree of G: a connected subgraph on all the vertices of G, that contains no closed paths (tree)

Theorem (Matrix tree theorem)

*The number of spanning trees of G equals any cofactor of L.***
Analogous to the Dedekind zeta function: for a connected graph G, the Ihara zeta function of G is

$$Z(u) = \prod_{[C]} (1 - u^{|C|})^{-1}$$

where $[C]$ runs over all prime cycles of G and $|C|$ is the length of C.

Prime cycles:
- Starting point does not matter
- Direction matters
- No backtracking or tails
- Primitive

Pendant edges don’t matter.
Ihara zeta function

Theorem (Bass, 1992)

\[Z(u)^{-1} = (1 - u^2)^{m-n} \det(I_n - uA + u^2(D - I_n)) \]

Consequence: \(Z(u) \) is the reciprocal of a polynomial of degree \(2m \).
The Dedekind zeta function of a number field encodes:

- the degree
- the discriminant
- the number of roots of unity
- the number of real and complex embeddings
- the product of the class number and the regulator
- the list of residual degrees of the extension primes
If G is md2 then $Z(u)$ encodes:

- the size (number of edges) m
- the order (number of vertices) n
- the number of loops
- the girth (length of shortest closed path in G)
- the number of spanning trees τ
- whether the graph is regular
- whether the graph is bipartite
- whether the graph is a cycle
- the adjacency spectrum (only for certain families of graphs, e.g. regular, biregular-bipartite)
How do we construct pairs of (non-isomorphic) graphs that have the same zeta function?

- GM* switching: change certain edges of a graph to get a cospectral mate (Haemers and Spence; Setyadi and Storm)
- Gassmann triples: the resulting graphs appear as covers of a given graph (Terras and Stark)
- Computer search
Wiener index

The usual distance function on a simple connected graph G:

$$d(v_i, v_j) = \text{the length of the shortest path from } v_i \text{ to } v_j$$

Molecular graphs
Define the \textit{Wiener index} of G as

$$W(G) = \sum_{1 \leq i < j \leq n} d(v_i, v_j).$$

Modified Wiener indices:

- \textit{Schultz index} (1989): $S(G) = \sum_{1 \leq i < j \leq n} (d_i + d_j)d(v_i, v_j)$
- \textit{Gutman index} (1994): $S^*(G) = \sum_{1 \leq i < j \leq n} (d_id_j)d(v_i, v_j)$.
Resistance distance

Regard G as an electrical network with unit resistors placed on each edge. Define the \textit{resistance distance} function on G by

$$r_{ij} = r(v_i, v_j) = \text{the effective resistance between } v_i \text{ to } v_j.$$

\textbf{Theorem (Bapat)}

The resistance distance on a simple connected graph G satisfies

$$r_{ij} = \frac{\det L^{(ij)}}{\tau}$$

where τ is the number of spanning trees and $L^{(ij)}$ is the matrix obtained from the Laplacian by deleting its i^{th} and j^{th} rows and columns.
Define a random walk on a simple connected graph G as the n-state Markov chain with transition matrix $P = (p_{ij})$, where $p_{ij} = \frac{1}{d_i}$, if vertices v_i and v_j are neighbors, and 0 otherwise. The chain has a stationary distribution: $\pi = (\pi_i)_{1 \leq i \leq n}$ where

$$\pi_i = \frac{d_i}{2m}$$

Let W be the $n \times n$ matrix whose rows are all equal to π.
Let $E_i T_j$ be the expected number of steps in a walk that starts at vertex v_i and ends when first reaching v_j. Then

$$r_{ij} = \frac{1}{2m}(E_i T_j + E_j T_i)$$

and

$$E_i T_j = \frac{z_{jj} - z_{ij}}{\pi_j}$$

where z_{ij} are the entries of the fundamental matrix

$$Z = (I_n - P + W)^{-1}$$
Kirchhoff Index

Define the *Kirchhoff index* of a simple connected graph G (Klein and Randic, 1993)

$$Kf(G) = \sum_{1 \leq i < j \leq n} r_{ij}.$$

Theorem (Gutman and Mohar, 1996)

The Kirchhoff index of a simple connected graph G satisfies

$$Kf(G) = n \sum_{i=2}^{n} \frac{1}{\mu_i}$$

where $\{\mu_1 = 0 < \mu_2 \leq \ldots \leq \mu_n\}$ is the Laplacian spectrum of G.

- complete graphs K_n: $Kf = n - 1$
- star graphs S_n: $Kf = (n - 1)^2$
Modified Kirchhoff Indices

Multiplicative degree-Kirchhoff index of G (Chen, Zhang, 2007)
If d_1, \ldots, d_n are the degrees of the vertices v_1, \ldots, v_n then define

$$Kf^*(G) = \sum_{1 \leq i < j \leq n} d_id_jr_{ij}.$$

Additive degree-Kirchhoff index of G (Gutman, Feng, Yu, 2012)

$$Kf^+(G) = \sum_{1 \leq i < j \leq n} (d_i + d_j)r_{ij}.$$
Let \mathbf{N} be the normalized Laplacian matrix of G and $\nu_1 = 0 < \nu_2 \leq \ldots \leq \nu_n$ be its spectrum.

Theorem (Chen, Zhang, 2007)

The multiplicative degree-Kirchhoff index of a simple connected graph G satisfies

$$Kf^*(G) = 2m \sum_{i=2}^{n} \frac{1}{\nu_i}$$

Compare to:

$$Kf(G) = n \sum_{i=2}^{n} \frac{1}{\mu_i}$$
Additive degree-Kirchhoff index

For a simple connected graph G: Palacios (2013):

$$Kf^+(G) = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_j E_i T_j + \sum_{j=1}^{n} \sum_{i=1}^{n} \pi_i E_i T_j.$$
Revisiting the other two indices

Theorem (Palacios, Renom, 2011)

\[Kf^*(G) = 2m \sum_{j=1}^{n} \pi_j E_i T_j = 2mK \]

where \(K \) is Kemeny’s constant.

Theorem

\[Kf(G) = \frac{1}{2m} \sum_{i<j} (E_i T_j + E_j T_i). \]
Question: Does the zeta function $Z(u)$ encode Kf, Kf^+, or Kf^*?

Figure: The crab (left) and the squid (right), found by Durfee and Martin
Kirchhoffian indices

<table>
<thead>
<tr>
<th>Index</th>
<th>Crab</th>
<th>Squid</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_f</td>
<td>607/7</td>
<td>593/7</td>
</tr>
<tr>
<td>K_f^+</td>
<td>9,166/21</td>
<td>8,956/21</td>
</tr>
<tr>
<td>K_f^*</td>
<td>22,843/42</td>
<td>22,339/42</td>
</tr>
</tbody>
</table>

Table: Kirchhoffian indices
Recall that

\[Z(u)^{-1} = (1 - u^2)^{m-n} \det(I_n - uA + u^2(D - I_n)) \]

Let \(f(u) = \det(I_n - uA + u^2(D - I_n)) \).

\[f(1) = \det(L) = 0 \]
Recall that
\[Z(u)^{-1} = (1 - u^2)^{m-n} \det(I_n - uA + u^2(D - I_n)) \]
\[f(u) = \det(I_n - uA + u^2(D - I_n)). \]

Theorem (Northshield, 1998)

\[f'(1) = 2(m - n)\tau \]

Corollary (Northshield)

\[\lim_{u \to 1^-} Z(u)(1 - u)^{m-n+1} = -\frac{1}{2^{m-n+1}(m - n)\tau} \]
Question: Does f'' contain any information about the graph?

Theorem (MS)

If $f(u) = \det(I_n - uA + u^2(D - I_n))$ then

$$f''(1) = 2(Kf^z + 2mn - 2n^2 + n)\tau$$

where

$$Kf^z = \sum_{1 \leq i < j \leq n} (d_i - 2)(d_j - 2)r_{ij}$$

$Kf^z =$ the zeta Kirchhoff index of the graph.
Recall:

\[
K_f = \sum_{1 \leq i < j \leq n} r_{ij}
\]

\[
K_f^* = \sum_{1 \leq i < j \leq n} d_i d_j r_{ij}
\]

\[
K_f^+ = \sum_{1 \leq i < j \leq n} (d_i + d_j) r_{ij}
\]

and

\[
K_f^z = \sum_{1 \leq i < j \leq n} (d_i - 2)(d_j - 2) r_{ij}
\]

Thus,

\[
K_f^z = K_f^* - 2K_f^+ + 4K_f
\]
Kirchhoffian indices of the crab and the squid

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Crab</th>
<th>Squid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kf</td>
<td>607/7</td>
<td>593/7</td>
</tr>
<tr>
<td>Kf^+</td>
<td>9,166/21</td>
<td>8,956/21</td>
</tr>
<tr>
<td>Kf^*</td>
<td>22,843/42</td>
<td>22,339/42</td>
</tr>
</tbody>
</table>

Table: Kirchhoffian indices

Both graphs have $Kf^z = \frac{249}{14}$
\[Kf^z = \sum_{1 \leq i < j \leq n} (d_i - 2)(d_j - 2)r_{ij} \]

If \(G \) is \(k \)-regular then

\[Kf^z = (k - 2)^2 Kf \]

If \(G \) has loops at all vertices then

\[Kf^z(G) = Kf^*(G') \]

where \(G' \) is obtained from \(G \) by deleting one loop from each vertex.
Corollary

If G and H have loops at each vertex and the same Ihara zeta function then $Kf^*(G') = Kf^*(H')$, where G' and H' are the graphs obtained by deleting one loop from each vertex.

Are there any such graphs?

Figure: Same Ihara zeta function (Czarneski)

Same Kirchhoff index ($Kf = \frac{5}{3}$).
Figure: Same $Kf^* = 43$ (and same $Kf = \frac{5}{3}$)
Subdivision graphs

\(S(G)\) obtained from \(G\) (simple) by inserting one vertex in each edge.

Theorem (Yang, 2014)

\[
Kf(S(G)) = 2Kf(G) + Kf^+(G) + \frac{1}{2}Kf^*(G) + \frac{m^2 - n^2 + n}{2}
\]

Theorem (Yang, Klein, 2015)

\[
Kf^+(S(G)) = 4Kf^+(G) + 4Kf^*(G) + (m + n)(m - n + 1) + 2m(m - n)
\]

Theorem (Yang, Klein, 2015)

\[
Kf^*(S(G)) = 8Kf^*(G) + 2m(2m - 2n + 1)
\]
Corollary (MS)

\[Kf^z(S(G)) = 2Kf^z(G) \]

\[Kf(S(G)) = \frac{1}{2} Kf^z(G) + 2Kf^+(G) + \frac{m^2 - n^2 + n}{2} \]

Corollary (MS)

Let \(G \) and \(H \) have the same Ihara zeta function. Then \(Kf(S(G)) = Kf(S(H)) \) if and only if \(Kf^+(G) = Kf^+(H) \).

Are there any such graphs?
Figure: Same zeta function (Setyadi and Storm)
Setyadi and Storm’s graphs:

<table>
<thead>
<tr>
<th>Index</th>
<th>Left graph</th>
<th>Right graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_f</td>
<td>19.70</td>
<td>19.75</td>
</tr>
<tr>
<td>K_f^*</td>
<td>220.4</td>
<td>220.2</td>
</tr>
<tr>
<td>K_f^+</td>
<td>132.6</td>
<td>132.6</td>
</tr>
</tbody>
</table>

Table: Kirchhoffian indices

Both graphs have $K_f^z = 34$.
Ihara zeta function

Recall that

\[Kf(S(G)) = \frac{1}{2} Kf^Z(G) + 2Kf^+(G) + \frac{m^2 - n^2 + n}{2} \]

If \(G \) is md2 then its zeta function also encodes:

- the zeta Kirchhoff index \(Kf^Z(G) \)
- the multiplicative Kirchhoff index \(Kf^*(G') \) (for graphs with loops at all vertices)
- the difference \(Kf(S(G)) - 2Kf^+(G) \)
The End