Integer Partitions and Group Characters

Madeline Dawsey

Inspired by Hilbert's 12th problem, G. R. Robinson and J. G. Thompson studied the number fields obtained from character values of alternating groups. For a finite group G, let $K(G)$ denote the field generated over \mathbb{Q} by its character values. For $n>24$, they proved that $K\left(A_{n}\right)=\mathbb{Q}\left(\left\{\sqrt{p^{*}}: p \leq n\right.\right.$ an odd prime with $\left.\left.p \neq n-2\right\}\right)$, where $p^{*}:=(-1)^{\frac{p-1}{2}} p$. Confirming a conjecture of John Thompson, we show that arbitrary suitable multiquadratic fields are similarly generated by the values of A_{n}-characters restricted to elements whose orders are only divisible by ramified primes. Our proof makes use of partitions of integers into distinct parts which are squares of π numbers. Extending Thompson's conjecture, we also identify the fields generated by characters of finite linear groups. This is joint work with Ken Ono and Ian Wagner.

