The Valuation of Polynomial Sequences

Vaishavi Sharma

Given a prime p and any positive integer n, the p-adic valuation of n, denoted by $\nu_{p}(n)$, is the highest power of p that divides n. This notion is extended to \mathbb{Q} by $\nu_{p}\left(\frac{a}{b}\right)=\nu_{p}(a)-\nu_{p}(b)$ and by setting $\nu_{p}(0)=\infty$.

For any sequence $\left\{a_{n}\right\}$ and a fixed prime p, the sequence of valuations $\left\{\nu_{p}\left(a_{n}\right)\right\}$ often presents interesting challenges. One of the goal is to obtain a closed form for these valuations.

In this talk I will discuss p-adic valuations of polynomials, sequences $\{P(n)\}$, focusing on polynomials of low degree $(2,3)$. It will be shown that the sequence of valuation $\nu_{2}(P(n))$ can be represented as a binary tree. Sometimes this is a finite tree. Examples of trees with infinite branches will be presented. The number of these branches is shown to be connect to the number of roots of $x^{n}-l$ in the ring of p-adic integers \mathbb{Z}_{p}. This is a joint work with Diego Villamizar.

