Topics in Multivariable Calculus

Goderdzi Pruidze

Consider \mathbb{R}^n with the standard Euclidean metric:

$$d(x,y) = \|y - x\|_n = \left(\sum_{i=1}^n (y_i - x_i)^2\right)^{1/2},$$

and let $\{e_1, e_2, \ldots, e_n\}$ be the standard basis in \mathbb{R}^n where $e_i = (0, 0, \ldots, 0, 1, 0, \ldots, 0)$ with 1 at *i*th place. Each $f : \mathbb{R}^n \to \mathbb{R}^m$ can be written as $f(x) = (f_1(x), \dots, f_m(x))$.

Let $U \subset \mathbb{R}^n$ be an open set. Consider a map $f: U \to \mathbb{R}^m$. We say that f is differentiable at $x \in U$ if there is a linear operator A from \mathbb{R}^n to \mathbb{R}^m such that

(1)
$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - Ah\|_m}{\|h\|_n} = 0$$

This means that in a small neighborhood of x the function f can be approximated by the linear operator A. One can check that if such an A exists, then it is unique. In this case A is called the **Differential** of f at x and is denoted by Df(x). If no such operator exists, then f is not differentiable at x.

Definition 1. The matrix of Df(x) in the standard basis is called the **Derivative** of f at x, and is denoted by f'(x).

We say that $f: U \to \mathbb{R}^m$ is continuously differentiable on U if the function $f': U \to L(n,m)$ is continuous in the norm defined by $||A|| = \max_{\|h\| \le 1} \{ \|Ah\| \}$. We write $f \in C^1(U, \mathbb{R}^m)$.

Theorem 2. Let $U \subset \mathbb{R}^n$ be an open subset, and let $f: U \to V \subset \mathbb{R}^m$ be differentiable at $x \in U$, and let $q: V \to \mathbb{R}^l$ be differentiable at y = f(x). Then the composite function $h: U \to \mathbb{R}^l$, defined by $h = q \circ f$ is differentiable at x, and furthermore,

$$Dh(x) = Dg(f(x)) \circ Df(x)$$

i.e. $h'(x) = g'(y) \cdot f'(x)$, where " \cdot " is matrix multiplication.

Theorem 3. Let $f: U \to V \subset \mathbb{R}^m$ be differentiable at $x \in U$. Then for each $1 \leq i \leq n$, the following limit exists

$$\lim_{t \to 0} \frac{f_i(x + te_j) - f_i(x)}{t}$$

and is equal to the *i*th component of $Df(x)e_j$, denoted by $\frac{\partial f_i}{\partial x_i}$.

Theorem 4 (Inverse Function Theorem). Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable in an open set containing a, and let det $f'(a) \neq 0$. Then there is an open set U containing a and and open set V containing f(a) such that $f: U \to V$ has a continuous inverse $q = f^{-1}: V \to U$ which is also continuously differentiable and for any $y \in V$ satisfies

$$g'(y) = [f'(g(y))]^{-1}$$

Definition 5. Let U be an open set in \mathbb{R}^n and V be an open set in \mathbb{R}^m . We say that $f: U \to V$ is C^1 diffeomorphism from U to V if f is a homeomorphism, and both f and f^{-1} are continuously differentiable.

Example 6. Show that if \mathbb{R}^n is diffeomorphic to \mathbb{R}^m , then n = m.

Theorem 7 (Implicit Function Theorem). Suppose that $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ is continuously differentiable in an open set containing the point (a, b), and let f(a, b) = 0. Let M be a matrix

$$\left(\frac{\partial f_i}{\partial x_j}\right) \quad 1 \le i \le m, \quad n+1 \le j \le n+m$$

If det $M \neq 0$, then there is an open set $U \subset \mathbb{R}^n$ containing a and an open set $V \subset \mathbb{R}^m$ containing b such that for each $x \in U$ there is a unique $y = g(x) \in V$ that satisfies the equation f(x, y) = 0. The function $g: U \to V$ is continuously differentiable.

Theorem 8 (Theorem about the Rank). Let $U \subset \mathbb{R}^n$ be an open set containing a point a. Suppose that $f: U \to \mathbb{R}^m$ is continuously differentiable with f(a) = b, and of constant rank rank f'(x) = p for all $x \in U$. Then there is an open set $V \subset U$ containing a and a diffeomorphism $g: V \to g(V)$ onto g(V) containing 0, and an open set $W \subset \mathbb{R}^m$ with diffeomorphism $h: W \to h(W)$, with $0 \in h(W)$, such that the map $\bar{f} = g^{-1} \circ f \circ h: g(V) \to h(W) \subset \mathbb{R}^m$ is given by

(2)
$$\bar{f}(x_1, x_2, \dots, x_p, \dots, x_n) = (y_1, y_2, \dots, y_p, 0, \dots, 0).$$

This theorem claims that the set $f^{-1}(b)$ is (n-p)-dimensional subspace in \mathbb{R}^n (i.e. a manifold of dimension n-p), and that f(U) is p-dimensional subspace in \mathbb{R}^m (in general, self-intersecting).

Example 9. In \mathbb{R}^n consider the unit sphere S^{n-1} , given by the equation $x_1^2 + \cdots + x_n^2 - 1 = 0$. Then S^{n-1} is (n-1)-dimensional subspace of \mathbb{R}^n . The derivative $f'(x) = (2x_1, 2x_2, \ldots, 2x_n)$ has rank 1 for all $x \in S^{n-1}$.

Example 10. Let $f : \mathbb{R}^n \to \mathbb{R}$ be of class C^2 . Show that the non-degenerated critical points of f are isolated.

Problems

Problem 1. Check whether the function $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) = ||x||_n$ is differentiable at 0 for $n \ge 2$. If the answer is affirmative, find f'(0).

Problem 2. Give an example of a continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ such that each directional derivative

$$Df(x)v = D_v f(x) = \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t}$$

exists at x = 0, but f is not differentiable at 0.

Problem 3. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{(x^2 + y^2)^{1/2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that f is differentiable at (0,0) but partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not continuous at (0,0).

Problem 4. If $f : \mathbb{R} \to \mathbb{R}$ satisfies $f'(a) \neq 0$ for all $a \in \mathbb{R}$, then f is 1 - 1.

Problem 5. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = (e^x \cos(y), e^x \sin(y))$. Show that det $f'(a) \neq 0$ for all $a \in \mathbb{R}^2$, but f is not 1 - 1.

References

- 1. Spivak, M., Calculus on Manifolds.
- 2. Rudin, W., Principles of Mathematical Analysis.
- 3. Richardson, L., Advanced Calculus: An Introduction to Linear Analysis.
- 4. Garrity, T., All the Mathematics You Missed (but Need to Know for the Graduate School).
- 5. Milnor, J., Morse Theory.
- 6. Analysis Test Bank for the Comprehensive Exam in Analysis at the Louisiana State University.