Topics in Multivariable Calculus

Goderdzi Pruidze

Consider \mathbb{R}^{n} with the standard Euclidean metric:

$$
d(x, y)=\|y-x\|_{n}=\left(\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)^{2}\right)^{1 / 2}
$$

and let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the standard basis in \mathbb{R}^{n} where $e_{i}=(0,0, \ldots, 0,1,0, \ldots, 0)$ with 1 at i th place. Each $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be writen as $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$.

Let $U \subset \mathbb{R}^{n}$ be an open set. Consider a map $f: U \rightarrow \mathbb{R}^{m}$. We say that f is differentiable at $x \in U$ if there is a linear operator A from \mathbb{R}^{n} to \mathbb{R}^{m} such that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\|f(x+h)-f(x)-A h\|_{m}}{\|h\|_{n}}=0 \tag{1}
\end{equation*}
$$

This means that in a small neighborhood of x the function f can be approximated by the linear operator A. One can check that if such an A exists, then it is unique. In this case A is called the Differential of f at x and is denoted by $D f(x)$. If no such operator exists, then f is not differentiable at x.
Definition 1. The matrix of $D f(x)$ in the standard basis is called the Derivative of f at x, and is denoted by $f^{\prime}(x)$.

We say that $f: U \rightarrow \mathbb{R}^{m}$ is continuously differentiable on U if the function $f^{\prime}: U \rightarrow L(n, m)$ is continuous in the norm defined by $\|A\|=\max _{\|h\| \leq 1}\{\|A h\|\}$. We write $f \in C^{1}\left(U, \mathbb{R}^{m}\right)$.

Theorem 2. Let $U \subset \mathbb{R}^{n}$ be an open subset, and let $f: U \rightarrow V \subset \mathbb{R}^{m}$ be differentiable at $x \in U$, and let $g: V \rightarrow \mathbb{R}^{l}$ be differentiable at $y=f(x)$. Then the composite function $h: U \rightarrow \mathbb{R}^{l}$, defined by $h=g \circ f$ is differentiable at x, and furthermore,

$$
D h(x)=D g(f(x)) \circ D f(x)
$$

i.e. $h^{\prime}(x)=g^{\prime}(y) \cdot f^{\prime}(x)$, where " ." is matrix multiplication.

Theorem 3. Let $f: U \rightarrow V \subset \mathbb{R}^{m}$ be differentiable at $x \in U$. Then for each $1 \leq i \leq n$, the following limit exists

$$
\lim _{t \rightarrow 0} \frac{f_{i}\left(x+t e_{j}\right)-f_{i}(x)}{t}
$$

and is equal to the i th component of $D f(x) e_{j}$, denoted by $\frac{\partial f_{i}}{\partial x_{j}}$.
Theorem 4 (Inverse Function Theorem). Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuously differentiable in an open set containing a, and let $\operatorname{det} f^{\prime}(a) \neq 0$. Then there is an open set U containing a and and open set V containing $f(a)$ such that $f: U \rightarrow V$ has a continuous inverse $g=f^{-1}: V \rightarrow U$ which is also continuousely differentiable and for any $y \in V$ satisfies

$$
g^{\prime}(y)=\left[f^{\prime}(g(y))\right]^{-1} .
$$

Definition 5. Let U be an open set in \mathbb{R}^{n} and V be an open set in \mathbb{R}^{m}. We say that $f: U \rightarrow V$ is C^{1} diffeomorphism from U to V if f is a homeomorphism, and both f and f^{-1} are continuousely differentiable.
Example 6. Show that if \mathbb{R}^{n} is diffeomorphic to \mathbb{R}^{m}, then $n=m$.
Theorem 7 (Implicit Function Theorem). Suppose that $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is continuously differentiable in an open set containing the point (a, b), and let $f(a, b)=0$. Let M be a matrix

$$
\left(\frac{\partial f_{i}}{\partial x_{j}}\right) \quad 1 \leq i \leq m, \quad n+1 \leq j \leq n+m .
$$

If $\operatorname{det} M \neq 0$, then there is an open set $U \subset \mathbb{R}^{n}$ containing a and an open set $V \subset \mathbb{R}^{m}$ containing b such that for each $x \in U$ there is a unique $y=g(x) \in V$ that satisfies the equation $f(x, y)=0$. The function $g: U \rightarrow V$ is continuously differentiable.
Theorem 8 (Theorem about the Rank). Let $U \subset \mathbb{R}^{n}$ be an open set containing a point a. Suppose that $f: U \rightarrow \mathbb{R}^{m}$ is continuously differentiable with $f(a)=b$, and of constant rank rank $f^{\prime}(x)=p$ for all $x \in U$. Then there is an open set $V \subset U$ containing a and a diffeomorphism $g: V \rightarrow g(V)$ onto $g(V)$ containing 0 , and an open set $W \subset \mathbb{R}^{m}$ with diffeomorphism $h: W \rightarrow h(W)$, with $0 \in h(W)$, such that the map $\bar{f}=g^{-1} \circ f \circ h: g(V) \rightarrow h(W) \subset \mathbb{R}^{m}$ is given by

$$
\begin{equation*}
\bar{f}\left(x_{1}, x_{2}, \ldots, x_{p}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots y_{p}, 0, \ldots, 0\right) . \tag{2}
\end{equation*}
$$

This theorem claims that the set $f^{-1}(b)$ is $(n-p)$-dimensional subspace in \mathbb{R}^{n} (i.e. a manifold of dimension $n-p$), and that $f(U)$ is p-dimensional subspace in \mathbb{R}^{m} (in general, self-intersecting).
Example 9. In \mathbb{R}^{n} consider the unit sphere S^{n-1}, given by the equation $x_{1}{ }^{2}+\cdots+x_{n}{ }^{2}-1=0$. Then S^{n-1} is $(n-1)$-dimensional subspace of \mathbb{R}^{n}. The derivative $f^{\prime}(x)=\left(2 x_{1}, 2 x_{2}, \ldots 2 x_{n}\right)$ has rank 1 for all $x \in S^{n-1}$.
Example 10. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be of class C^{2}. Show that the non-degenerated critical points of f are isolated.

Problems

Problem 1. Check whether the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(x)=\|x\|_{n}$ is differentiable at 0 for $n \geq 2$. If the answer is affirmative, find $f^{\prime}(0)$.

Problem 2. Give an example of a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that each directional derivative

$$
D f(x) v=D_{v} f(x)=\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}
$$

exists at $x=0$, but f is not differentiable at 0 .
Problem 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{\left(x^{2}+y^{2}\right)^{1 / 2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that f is differentiable at $(0,0)$ but partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not continuous at $(0,0)$.
Problem 4. If $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime}(a) \neq 0$ for all $a \in \mathbb{R}$, then f is $1-1$.
Problem 5. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=\left(e^{x} \cos (y), e^{x} \sin (y)\right)$. Show that $\operatorname{det} f^{\prime}(a) \neq 0$ for all $a \in \mathbb{R}^{2}$, but f is not $1-1$.

References

1. Spivak, M., Calculus on Manifolds.
2. Rudin, W., Principles of Mathematical Analysis.
3. Richardson, L., Advanced Calculus: An Introduction to Linear Analysis.
4. Garrity, T., All the Mathematics You Missed (but Need to Know for the Graduate School).
5. Milnor, J., Morse Theory.
6. Analysis Test Bank for the Comprehensive Exam in Analysis at the Louisiana State University.
