Some properties of the real line

Keng Wiboonton

Theorem 1 Every open set of \mathbb{R} can be written as a countable union of mutually disjoint open intervals. (Zorn's lemma is used in the proof.)

In general, for n > 1, open sets in \mathbb{R}^n cannot be written as a countable union of mutually disjoint open intervals. (A subset I of \mathbb{R}^n is an interval if $I = I_1 \times \ldots \times I_n$ where I_1, \ldots, I_n are intervals in \mathbb{R} .)

Exercise. Prove that the open unit disc $B(0;1) := \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ in the plane cannot be as a countable union of mutually disjoint open intervals.

Theorem 2 (*Heine-Borel*) A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Theorem 3 (Bolzano-Weierstrass) Every bounded, infinite set of real numbers has a limit point. (Recall that a point is said to be a limit point of A if it is the limit of a sequence of distinct terms from A.)

Theorem 4 Every connected subset of \mathbb{R} is an interval.

Problems

Problem 1. Let $A \subseteq \mathbb{R}$ be uncountable.

(a) Show that A has at least one limit point.

(b) Show that A has uncountably many limit points.

Problem 2. Let $E \subseteq \mathbb{Q}$ be the set of x whose decimal expansion is of the form $x = 0.d_1d_2...d_N$ for some $N \in \mathbb{N}$, and where $d_1, \ldots, d_N \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ (so $d_j \neq 0$ and $d_j \neq 9$ for $j = 1, \ldots, N$). Show that any compact subset of E is finite.

Can we drop the hypothesis that $d_j \neq 0$ and $d_j \neq 9$?

Problem 3. Prove that there exists no continuous bijection from (0, 1) to [0, 1].