G.E.A.U.X. MATH @ LSU: TOPOLOGY IV: CONNECTEDNESS

Definition 0.1. Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty open subsets of X whose union is X. The space X is said to be *connected* if there does not exist a separation of X.

Proposition 0.2. A space X is connected if and only if the only subsets of X that are both open and closed in X are the empty set and X itself.

Proof. For if A is a nonempty proper subset of X that is both open and closed in X, then the sets U = A and V = X - A constitute a separation of X for they are open, disjoint, and nonempty, and their union is X. Conversely, if U and V form a separation of X, then U is nonempty and different from X, and it is both open and closed in X. \Box

Lemma 0.3. If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose union is Y, neither of which contains a limit point of the other. The space Y is connected if there exists no separation of Y.

Proof. Suppose first that A and B form a separation of Y. Then A is both open and closed in Y. The closure of A in Y is the set $\overline{A} \cap Y$ (where \overline{A} denotes the closure of A in X). Since A is closed in Y, $A = \overline{A} \cap Y$; or to say the same thing, $\overline{A} \cap B = \emptyset$. Since \overline{A} is the union of A and its limit points, B contains no limit points of A. A similar argument shows that A contains no limit points of B.

Conversely, suppose that A and B are disjoint nonempty sets whose union is Y, neither of which contains a limit point of the other. Then $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$; therefore, we conclude that $\overline{A} \cap Y = A$ and $\overline{B} \cap Y = B$. Thus both A and B are closed in Y, and since A = Y - Band B = Y - A, they are open in Y as well. \Box

Example 0.4. (1) $Y = [-1, 0) \cup (0, 1] \subset \mathbb{R}$ (2) $Y = [-1, 1] \subset \mathbb{R}$ (3) $\mathbb{Q} \subset \mathbb{R}$ (4) $Y = \{x \times y | y = 0\} \cup \{x \times y | x > 0 \text{ and } y = 1/x\} \subset \mathbb{R}^2$

Date: August 21, 2008.

2 G.E.A.U.X. MATH @ LSU: TOPOLOGY IV: CONNECTEDNESS

Lemma 0.5. If the sets C and D form a separation of X, and if Y is a connected subspace of X, then Y lies entirely within either C or D.

Proof. Since C and D are both open in X, the sets $C \cap Y$ and $D \cap Y$ are open in Y. These two sets are disjoint and their union is Y; if they were both nonempty, they would constitute a separation of Y. Therefore, one of them is empty. Hence Y must lie entirely in C or in D.

Theorem 0.6. The union of a collection of connected subspaces of X that have a point in common is connected.

Proof. Let $\{A_{\alpha}\}$ be a collection of connected subspaces of a space X; let p be a point of $\cap A_{\alpha}$. We prove that the space $Y = \bigcup A_{\alpha}$ is connected. Suppose that $Y = C \cup D$ is a separation of Y. The point p is in one of the sets C or D; suppose $p \in C$. Since A_{α} is connected, it must lie entirely in either C or D, and it cannot lie in D because it contains the point p of C. Hence $A_{\alpha} \subset C$ for every α , so that $\bigcup A_{\alpha} \subset C$, contradicting the fact that D is nonempty. \Box

Theorem 0.7. Let A be a connected subspace of X. If $A \subset B \subset \overline{A}$, then B is also connected.

Proof. Let A be connected and let $A \subset B \subset \overline{A}$. Suppose that $B = C \cup D$ is a separation of B. By Lemma 0.5, the set A must lie entirely in C or in D; suppose that $A \subset C$. Then $\overline{A} \subset \overline{C}$; since \overline{C} and D are disjoint, B cannot intersect D. This contradicts the fact that D is a nonempty subset of B.

Theorem 0.8. A finite cartesian product of connected spaces is connected.

Proof. Proceed by induction on the number of connected spaces in the cartesian product, but only the base case $X \times Y$ is presented below.

Choose a "base point" $a \times b \in X \times Y$. Note that $X \times b$ is connected, as is $a \times Y$. The space $T_x := (X \times b) \cup (x \times Y)$ is connected for each xbecause these share the point $x \times b$. Then the union $\cup T_x = X \times Y$ is connected because each connected space T_x contains the point $a \times b$. \Box

3

1. Exercises

Exercise 1. Let \mathcal{T} and \mathcal{T}' be two topologies on X. If \mathcal{T} is coarser than \mathcal{T}' , what does connectedness of X in one topology say about connectedness in the other?

Exercise 2. Let $\{A_{\alpha}\}$ be a collection of connected subspaces of X; let A be a connected subspace of X.

- (1) If $A_n \cap A_{n+1} \neq \emptyset$ for all n, show $\cup A_n$ is connected.
- (2) If $A \cap A_{\alpha} \neq \emptyset$ for all α , show $A \cup (\cup A_{\alpha})$ is connected.

Exercise 3. Let $A \subset X$. Show that if C is a connected subspace of X that intersects both A and X - A, then C intersects the boundary of A.

Exercise 4. Let A be a proper subset of X, and let B be a proper subset of Y. If X and Y are connected, show that $(X \times Y) - (A \times B)$ is connected.

Exercise 5. Let $Y \subset X$; let X and Y be connected. Show that if A and B form a separation of X - Y, then $Y \cup A$ and $Y \cup B$ are connected.

References

[1] James Munkries, Topology, Second Ed., Chapter 3 Section 23, pp.148-152