Section 2.6  Continuity

Topic 1:  Continuity at a Point

A function f is continuous at a if .  If f is not continuous at a, then a is a point of discontinuity.
[image: ]

Continuity Checklist
In order for f to be continuous at a, the following three conditions must hold. 
1. 
 is defined (a is in the domain of f).
2. 
exists.
3. 
 (the value of f equals the limit of f at a).



If a function is continuous at a, then direct substitution can be used to evaluate  because . 




Topic 2:  Classifying Discontinuities



[bookmark: _GoBack]The discontinuities in graphs (a) and (b) below are called removable discontinuities because the function can be made continuous at a by defining or redefining  so that .   These can also be called point discontinuities.
 

Jump discontinuities and infinite discontinuities shown in graphs (c) and (d) below are called non-removable discontinuities because the function cannot be made continuous at  by defining or redefining .  
[image: ]

Topic 3:  Continuity on an Interval
Continuity at Endpoints


A function f is continuous from the right at a if .  A function g is continuous from the left at b if .  
[image: ]	[image: ]


Continuity on an Interval
A function f is continuous on an interval I if it is continuous at all points of I.  If I contains endpoints, continuity on I means continuous from the right or left at the endpoints.



Topic 4:  Continuity of Trigonometric Functions
The six trigonometric functions are continuous for all x in their domains. 
· 

 and  are continuous for all x.
· 


 and  are continuous for all x such that  where n is an integer.
· 


 and  are continuous for all x such that  where n is an odd integer.

Topic 5:  Limits Involving Transcendental Functions


Topic 6:  The Intermediate Value Theorem





The Intermediate Value Theorem:  Suppose f is continuous on the interval   and L is a number strictly between  and .  Then there exists at least one number c in  such that  .
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In (a, b) there is at least one number ¢ such that f(c) = L,
where L is between f(a) and f(b).
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