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I. Background 

 

 In the most basic part of the brain, the leptin signaling pathway is a complex feedback loop 

which helps an organism determine when an intake of food is necessary or when the intake has been 

sufficient.  In humans, this feedback loop can trigger sensations of hunger and satiation.  Understanding 

this process can, in the future, help researchers understand and even chemically manipulate parts of 

this cycle, which aid our understanding of obesity.  A paper by Qian Gao et. al. linked one particular gene 

transcription in this cycle to obesity, diabetes, infertility, and thermal dysregulation. 

 

Around the world, researchers are studying this process in lab rats.  Researchers measure gene 

and protein abundancies in rat populations over the course of two days, sampling every 4 hours.  Using 

these data sets, a clearer picture of this process can be drawn.  Andre Ptitsyn, a professor at Colorado 

State Univeristy, has been studying this process and began work with Jake Blanton, a Louisiana State 

University graduate student, on a mathematical model of this feedback loop in the summer of 2009. 

 

II. Introduction 

 

 This project is related to the work done June and July of 2009 by Jake Blanton.  He has worked 

with Andre Ptitsyn to develop a model in MatLab of this feedback loop.  At one stage of the leptin 

signaling pathway, phosphorylated STAT3 activates SOCS3 transcription in the cell nucleus.  The SOC3 

gene is translated by the cell’s ribosome which builds a protein.  Research data has revealed that two 

different transcriptions of the SOC3 gene are produced in this nucleus, a short transcription and a long 

transcription.  When the global production of this gene appears constant, these two populations 

oscillate, behaving like two sinusoidal waves completely out of phase.  We seek to model this behavior.   

 The main difference between these two gene populations is the decay rate.  The long 

transcription is more often subject to predation by polymerase, an enzyme which breaks genes down 

into component nucleotides, which can then be reused to transcribe genes.  The reason the same gene 

has two typical transcriptions, however, remains a mystery.  While several labs around the world have 

produced data on these genes, every data set is very granular due to the technical difficulties of 

gathering this information. 

 



III. The Models 

 

 Because the causes of the variable populations are unknown, we develop multiple models.  

First, we will develop and refine a fixed life-span model.  Then we will develop and refine a production 

and decay rate model.  We will examine the models when the global transcription rate is a sinusoidal 

function, and we will examine the production and decay model when the global transcription rate is also 

a square function and test for behavior when a shock, an influx of one transcript of the gene SOC3, is 

introduced to the system. 

 

Model 1:  Fixed life-span model. 

 

 This model will use the following state variables and parameters. 

The state variables: 

n1(t) = amount of the short mRNA transcription of the gene (quantity) 

n2(t) = amount of the long mRNA transcription of the gene (quantity) 

 r(t) = global transcription rate of the gene (quantity per time) 

The constant parameters: 

 p= probability that if a gene is transcribed, a short mRNA transcript results (%) 

 L1 = average life span for the short transcription (time) 

 L2 = average life span for the long transcription (time) 

 

To find the amount of ni present, we will add the amount which was present to the amount 

produced and subtract the amount lost.  We will consider how this happens in the time step,   , it takes 

to transcribe the SOC3 gene, although several copies of this gene can be simultaneously transcribed.  In 

this model, the amount of ni produced is the global gene production multiplied by the probability that 

any gene transcribed will be type ni.  The amount of ni lost is the amount which was produced one 

lifespan ago.  The formal equations follow. 

 

                                            

                                                    

 

These recursive models are more useful in the following form, found by taking the limit of these 

equations as the time step approaches 0. 

 

                     

                         

 

The solutions to these differential equations depend on the behavior of the global transcription rate.  

The simplest behavior rate can exhibit is simple on off switching.  Experimental data suggest the 

behavior of this transcription rate oscillates over the course of a day, which we will represent as 2 

radians.  Figure 1 shows this simple switching. 



 
Figure 1:  On/Off switching, the square curve                                

                       
. 

We will use this transcription rate in the abundance equations derived for this model.  Choosing the 

following parameters,                                , we get the behavior shown in 

Figure 2, with the blue line representing the abundance of the short SOC3 transcript, and the red line, 

the long SOC3 transcript.  The black line represents the global production rate.   

 

 
Figure 2: Model: 1.0: Graph of n1 (red) and n2 (blue) populations when                                 

                        (black). 

This plot shows the piece-wise linear behavior of the populations when the global transcription rate is 

switching on and off.  This rate may not just turn on and off over the course of a day; the rate may 

oscillate below full production. 

 

We will assume that the global production rate is sinusoidal, letting                 and 

letting 2 radians represent the period of a day.  See Figure 3.   



 
Figure 3:  Oscillating global transcription rate, the sinusoid curve               . 

Using this formula for the global transcription rate, we can find the abundances of the short and long 

SOC3 transcriptions in the closed form solutions below.   

 

                                                

                                                    

 

Using these equations and inserting values for the parameters, we can model the behavior of the 

populations.  The following plot was made by MatLab software written by Jake Blanton.  Letting 

              , and choosing the following parameters:                   , we get the 

behavior shown in Figure 4, where the initial values have been chosen so the curves are non-negative.  

The blue line represents the population of the short SOC3 transcript, n1, and the red line represents the 

long SOC3 transcript, n2. 

 

 
Figure 4: Model: 1.0: Graph of n1 (blue) and n2 (red) populations when               . 

This plot shows sinusoidal behavior in the gene abundances, driven by the sinusoidal production rate.  

Notice the slight phase shift between the red and blue curves.  This shift is very small, which does not 

reflect the experimental data.  The experimental data indicate that the gene populations are completely 

out of phase, effectively adding to a constant function.   

 



We can vary the parameter values to try to produce a plot closer to the experimental data.  To 

accomplish this, we will maximize the phase shift between these curves.  By taking a derivative, it is easy 

to see that the times corresponding to extrema of these graphs depend only on L1 and L2.  If we fix the 

lifespan of the short SOC3 transcript at 6, just shy of one day, and allow the shorter lifespan of the long 

SOC3 transcript to vary, we can see how the phase shift changes.  Figures 5 show how the phase shift 

can vary as this lifespan takes the values .5 (red), 1 (cyan), 2 (magenta), 3 (black), 4 (green), and 5 

(yellow).  The initial values for these curves have been set so the abundances are non-negative, and 

p=30%. 

 

 
Figure 5: Model: 1.0: Graph of n1 (blue) and n2 populations when      and L2 is set at .5 (red), 1 (cyan), 2 (magenta), 3 

(black), 4 (green), and 5 (yellow). 

This plot shows that a shorter L2 corresponds to a larger phase shift between the population curves for 

n1 and n2. The amplitude of the n2 curve also decreases as this lifespan decreases.  The curve which is 

closest to out of phase with the blue line, representing the population of the short SOC3 transcript, is 

the red line, reflecting the shortest L1 value.   

  

 Because the phase shift between the two gene populations depends solely on the lifespans, we 

can calculate the relation.  We will assume the curve               has 0 phase shift.  Because this 

sinusoid has a maximum at time 0, we will assume the first positive maximum of the population curve is 

the phase shift.  To find this maximum, we will take the derivative and set it to zero. 

 

                                                
 

  
                            

 

We can set this derivative equal to zero to find the extrema points. 

 

                    

                                       



Notice that this equation depends only on the gene’s life span, and this equation can be used to find the 

extrema values for either gene population.  If we assume         , we can divide and simplify to find 

the following.  Note that our arctan function provides an angle value  
 

 
   

 

 
. 

 

          
       

         
  

 

After comparing this equation with the phase shifts found in Figure 6, we can determine that these time 

values reflect not the maxima, but the minima.  Because these values are 0.5 apart, the following 

equation gives us the relation between the lifespan and the phase shift (from              ). 

 

         
       

         
  

 

 
 

 

This function is graphed in Figure 6. 

 

 
Figure 6: Model: 1.0: The phase shift from               to the sinusoid curve when a gene’s lifespan is L. 

This plot shows the relation between the phase shift and the gene’s lifespan is linear with slope 0.5 for 

       and the curve is periodic.   

 

This linear behavior is a caused by the argument of the arctangent function being so similar to 

tangent.   This curve shows that the population curve of one gene is never more than  radians from 

             .  One way to produce two curves which are almost perfectly out of phase would be 

to let one lifespan approach 2 from the left and the other from the right.  The closed form solutions 

show that as a gene’s lifespan approaches 2, however, the population curve approaches a constant. 

 

If we select lifespans close to 2, we get the phase shift shown in Figure 7.  This plot has been 

normalized so no negative abundances appear. 



 
Figure 7: Model: 1.0: Graph of n1 (blue) and n2 (red) populations when                              . 

This plot shows nearly perfectly out of phase population curves.  Notice the extremely small amplitudes 

of these curves.  Figure 8 shows how these curve amplitudes change as lifespan changes when p=30%. 

 

 
Figure 8: Model: 1.0: The amplitude of n1 (blue) and n2 (red) populations depending on the gene’s lifespan is Li. 

This plot shows that as either gene’s lifespan approaches 2, the amplitude of the population curve will 

approach 0.  This trend can also be seen in Figure 5. 

 

Now, we will refine this model by adding a predation parameter. 

 

Model 1.1:  Fixed life-span model with a predation parameter. 

 

 Model 1.1 adds another level of complexity to Model 1.  We incorporate a predation constant, 

which affects only the long mRNA transcription.  This model will use the following state variables and 

parameters. 

The state variables: 

n1(t) = amount of the short mRNA transcription of the gene (quantity) 

n2(t) = amount of the long mRNA transcription of the gene (quantity) 



 r(t) = global transcription rate of the gene (quantity per time) 

The constant parameters: 

 p = probability that if a gene is transcribed, a short mRNA transcript results (%) 

 L1 = average life span for the short transcription (time) 

 d = decay rate of the long transcription due to predation (% per time) 

 

To find the amount of ni present, we will add the amount which was present to the amount 

produced and subtract the amount lost.  We will consider how this happens in the time step,   , it takes 

to transcribe the SOC3 gene, although several copies of this gene can be simultaneously transcribed.  In 

this model, the amount of ni produced is the global gene production multiplied by the probability that 

any gene transcribed will be type ni.  The amount of n1 lost is the amount which was produced one 

lifespan ago.  The amount of n2 lost is the amount lost to predation, a fixed percentage of the amount 

which was present.  The formal equations follow. 

 

                                            

                                              

 

These basic recursive models are more useful in the following form, found by taking the limit of these 

equations as the time step approaches 0. 

 

                     

                       

 

We can assume the global transcription rate switches from on to off over the course of a day, 

represented by 2 radians, see Figure 1.  Choosing the parameters                        

      , we get the behavior shown in Figure 9. 

 

 
Figure 9: Model 1.1: Graph of n1 (blue) and n2 (red) populations when                                 

                        (black). 

This plot shows the piece-wise linear behavior of short SOC3 transcript population and the similar 

behavior of the long SOC3 transcript population when the global transcription rate is switching on and 

off.  This rate may not just turn on and off over the course of a day; the rate may oscillate below full 

production. 



 

We will assume that the global production rate is sinusoidal, letting                 and 

letting 2 radians represent the period of a day.  Using this equation, we can find the abundances of the 

short and long SOC3 transcriptions in the closed form solutions below.   

 

                                                

      
     

    
   

                           

 

Using these equations and inserting values for the parameters, we can model the behavior of 

the populations.  The following plot was made using MatLab software written by Jake Blanton.  Letting 

              , and choosing the following parameters:                 , we get the 

behavior shown in Figure 10, where the initial values have been chosen so the curves are non-negative.  

The blue line represents the population of n1; the red line, n2. 

 

 
Figure 10: Model 1.1: Graph of n1 (blue) and n2 (red) populations when               . 

This plot shows the sinusoidal behavior of the two gene populations.  Again, notice the small phase shift, 

which does not reflect the larger phase shift apparent in the experimental data.  Changing the 

parameters for this model within plausible ranges did not produce a large enough phase shift to cause 

these two curves to be completely out of phase.   

  

 There may be that more of the parameters vary with time.  For example, it may be that the 

probability that a short transcription is produced may decline as the global SOC3 gene population 

increases.  Since this version of the gene has a longer lifespan, this variation would help stabilize the 

global population.  There is, however, no experimental data to support this hypothesis.  Model 1 may be 

further refined in the future, but now we consider a different model. 

 

 



Model 2:  The basic production rate and decay rate model. 

 

This model is a basic production rate and decay rate model.  The relevant constants and 

variables follow.  Separating the parameter modeled by lifespan into production and decay rates should 

better model the probabilistic behavior.  We introduce this model assuming a fixed global production 

rate. 

The state variables: 

n1(t) = amount of the short mRNA transcript of the gene (quantity) 

n2(t) = amount of the long mRNA transcript of the gene (quantity) 

The constant parameters: 

r = global transcription rate of the gene (quantity per time) 

p = probability that if a gene is transcribed, a short mRNA transcript results (%) 

d1 = rate of decay for the short transcript (% per time) 

d2 = rate of decay for the long transcript (% per time) 

 

To find the amount of ni present, we will add the amount which was present to the amount 

produced and subtract the amount lost.  We will consider how this happens in the time step,   , it takes 

to transcribe the SOC3 gene, although several copies of this gene can be simultaneously transcribed.  In 

this model, the amount of ni produced is the total amount of the gene production multiplied by the 

probability that any gene transcribed will be type ni.  The amount of ni lost is a fixed percentage of the 

amount which was present.  The formal equations follow. 

 

                                     

                                         

 

These basic recursive models are more useful in the following form, found by taking the limit of 

these equations as the time step approaches 0. 

 

              

                  

 

The closed-form solutions to these differential equations follow. 

 

      
 

  
                            

      
 

  
                                    

 

Using these equations and inserting values for the parameters, we can model the behavior of 

the populations.  The following plots (see Figure 11) were made using MatLab software written by Jake 

Blanton.  For the first plot, we set the following parameter values:                     

               .   



 

 
Figure 11:  Model 2.0: Graph of n1 (blue) and n2 (red) populations for constant input rate 1 (left) or 0 (right). 

These plots show the gene populations behaviors from initial population amounts to steady state 

abundances, with the blue line modeling the population of n1 and the red line, n2.  In the second plot, on 

the right, we set the following parameter values:                                      

to show the decay of the populations when the gene is not transcribed.  Again, the blue line represents 

the population of n1 and the red line, n2.  These plots show simple, exponential behavior.  In order to 

better approximate the complexity of the actual process, we will need to allow some of these fixed 

parameters to become variables. 

 

Model 2.1:  Introducing a variable production rate. 

 

Now, we can replace the fixed production rate with a variable production rate, r(t).  The state 

variables and constant parameters follow. 

The state variables: 

n1(t) = amount of the short mRNA transcript of the gene (quantity) 

n2(t) = amount of the long mRNA transcript of the gene (quantity) 

r(t) = global transcription rate of the gene (quantity per time) 

The constant parameters: 

p = probability that if a gene is transcribed, a short mRNA transcript results (%) 

d1 = rate of decay for the short transcript (% per time) 

d2 = rate of decay for the long transcript (% per time) 

 

To find the amount of ni present, we will add the amount which was present to the amount 

produced and subtract the amount lost.  We will consider how this happens in the time step,   , it takes 

to transcribe the SOC3 gene, although several copies of this gene can be simultaneously transcribed.  In 

this model, the amount of ni produced is the total amount of the gene production multiplied by the 



probability that any gene transcribed will be type ni.  The amount of ni lost is a fixed percentage of the 

amount which was present.  The formal equations follow. 

 

                                           

                                               

 

These basic recursive models are more useful in the following form, found by taking the limit of 

these equations as the time step approaches 0. 

 

                 

                     

 

The solutions to these differential equations depend on the behavior of the global transcription 

rate.  First, we will assume this rate switches on and off, and                                
                       

 as shown in 

Figure 1.  Using this global production rate, and the fixed parameters                 

               , we get the behavior shown in Figure 12. 

 
Figure 12:  Model 2.1:  Graph of n1 (blue) and n2 (red) populations when                                 

                        (black). 

This plot shows the periodic behavior of the populations when the global transcription rate is switching 

on and off.  This rate may not just turn on and off over the course of a day; the rate may oscillate below 

full production. 

 

We will assume that the global production rate is sinusoidal, letting                 and 

letting 2 radians represent the period of a day.  Using this equation, we can find the abundancies of the 

short and long SOC3 transcriptions in the closed form solutions below.   

 

            
 

    
   

                     

            
     

    
   

                     

 

Using the software developed by Jake Blanton, and setting the fixed parameters             

                   , we find the behavior shown in Figure 13. 



 

 
Figure 13:  Model 2.1:  Graph of n1 (blue) and n2 (red) populations when               . 

This plot shows sinusoidal behavior in the gene abundancies, driven by the sinusoidal production rate.  

This model, like the previous models, shows a small phase shift between the red and blue curves.  Again, 

this small shift does not reflect the experimental data, which indicate the curves should be completely 

out of phase.  

 

We can vary the parameter values to try to produce a plot closer to the experimental data.  To 

accomplish this, we will maximize the phase shift between these curves.  By taking a derivative, it is easy 

to see that the times corresponding to extrema of these graphs depend only on d1 and d2.  By varying 

these values between .1 and .9, the maximum phase shift that can be produced is just over .6.  In a 

period of 2, this is still a very small phase shift. 

  

This model is not flexible enough to produce the desired output.  We can further refine the 

model by allowing another parameter to vary. 

 

Model 2.2:  Introducing a variable p. 

 

Until this point, we have assumed the probability that a transcribed gene was a short transcript 

or a long transcript was fixed.  It may be that, in order to maintain a constant global quantity of the 

gene, when the global amount of the gene is low, the hardier, longer-lived transcription is produced.  

We will assume the probability that a short transcript (the longer-lived version of the gene) is more likely 

to be produced if the global gene supply is low.  The state variables and constant parameters follow. 

The state variables: 

n1(t) = amount of the short mRNA transcript of the gene (quantity) 

n2(t) = amount of the long mRNA transcript of the gene (quantity) 

r(t) = global transcription rate of the gene (quantity per time) 

p(t) = probability that if a gene is transcribed, a short mRNA transcript results (%) 



The constant parameters: 

d1 = rate of decay for the short transcript (% per time) 

d2 = rate of decay for the long transcript (% per time) 

 

To find the amount of ni present, we will add the amount which was present to the amount 

produced and subtract the amount lost.  We will consider how this happens in the time step,   , it takes 

to transcribe the SOC3 gene, although several copies of this gene can be simultaneously transcribed.  In 

this model, the amount of ni produced is the total amount of the gene production multiplied by the 

probability that any gene transcribed will be type ni.  The amount of ni lost is a fixed percentage of the 

amount which was present.  The formal equations follow. 

 

                                                 

                                                     

 

These basic recursive models are more useful in the following form, found by taking the limit of 

these equations as the time step approaches 0. 

 

                    

                        

 

The solutions to these differential equations depend on the behavior of the global transcription rate and 

the behavior of the probability that when a gene is transcribed, a short transcription is produced.   

 

We will assume the variable      tries to stabilize the global gene population at 2, and let 

                 .  First, we will assume the global production rate switches on and off, and 

                               
                       

 as shown in Figure 1.  Using the fixed parameters             

             , we get the behavior shown in Figure 14. 

 

 
Figure 14:  Model 2.2:  Graph of n1 (blue) and n2 (red) populations when                                                                                           

                                
                       

 (black) and                   (purple). 



This plot shows the periodic behavior of the populations when the global transcription rate is switching 

on and off and the probability that the short SOC3 transcript will be made changes based on the global 

population, as shown by the purple curve in Figure 10.  The global production rate, however, may not 

just turn on and off over the course of a day; the rate may oscillate below full production. 

 

We will assume that the global production rate is sinusoidal, letting                 and 

letting 2 radians represent the period of a day.  We will let                  .  Using the 

software developed by Jake Blanton, and choosing the fixed parameters                  

        , we find the behavior shown in Figure 15. 

 

 
Figure 15:  Model 2.2:  Graph of n1 (blue) and n2 (red) populations with                   and               . 

This plot shows periodic behavior in the gene abundances and p(t).  Unlike the behavior in previous 

models, the behavior of these curves is not purely sinusoidal.  The red and blue curves are close enough 

to sinusoids, however, to see an apparent small phase shift.  Again, this small shift does not reflect the 

experimental data, which indicates the curves should be completely out of phase.  

 

IV.  An Alternate Theory 

 

 The models developed in this report all failed to produce population curves which are 

completely out of phase.  This means that either there is another significant factor that none of these 

models has accounted for, or the original interpretation of the data is not correct.  In an organism, SOC3 

gene production is part of an appetite suppressor signal.  It may make more sense to expect the global 

SOC3 gene production to be sinusoidal, and the populations of the different transcriptions to oscillate 

inside this sinusoid.  Also, the extreme granularity of the data may have masked this oscillation. 

 

 Every model developed in this report, with the exception of Model 2.0 which lacked a variable 

global transcript rate, produces this type of oscillation.  For example, we examine Model 2.1 with the 

following behavior of the populations of the short and long SOC3 transcripts. 



 

            
 

    
   

                     

            
     

    
   

                     

 

We can normalize by the sum, or global population,                  .  These curves are shown in 

Figure 16, with parameters:                                         .  These 

parameters differ from those used to produce Figure 10, because now, we will require the initial values 

for the populations to be non-zero, since to normalize, we will divide by the global population, ng . 

 
Figure 16:  Model 2.1:  Graph of n1 (blue), n2 (red), and ng (cyan) populations. 

This plot shows the oscillation of the different transcripts inside the sinusoidal global population.  It will 

be easier to see the oscillation inside the sinusoid after normalizing by the global gene abundancy, see 

Figure 16. 

 

 
Figure 16:  Model 2.1:  Graph of percentages of n1 (blue) and n2 (red) inside the global ng population. 
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This plot shows the behavior of the percentages of the short and long transcripts.  These curves add to a 

total of 100%, and behave like out of phase sinusoids. 

V.  Shocking the Model 

 Now, we will consider the behavior of Model 2.1 when certain shocks are introduced.  We will 

test the model’s behavior when the system is infused with extra short or long SOC3 transcriptions or 

when these quantities are artificially reduced.  Note that if we examine shocking Model 1.0, the effects 

would disappear after one lifespan.  We will also test the model when the global production rate 

changes in certain ways. 

 

The following plot (Figure 17) shows the population curves for this model using the parameters 

discussed in section III. 

 

 
Figure 17:  Model 2.1:  Graph of n1 (blue) and n2 (red) for                                              . 

The populations appear to reach a stable oscillation by the third day, at time t=3*2.   

 

We will consider an influx of three units to the population of n1, the short SOC3 transcript, to see 

how the populations might behave.  See Figure 18. 

 

 

 
Figure 18:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) with an influx of n1. 

This plot show that, while the immediate effect of the influx is dramatic, tripling the population of the 

short SOC3 transcript, the population recovers  normal behavior relatively quickly, after less than three 

days (by t=6*2.  Isolating this effect by subtracting the population curve shown in blue in Figure 17, we 

can see the dampening very clearly.  See Figure 19. 



 

 
Figure 19:  Shocked Model 2.1:  Graph of the increase in n1 (blue) caused by the shock. 

This plot shows that the shock is dampened within approximately 3 days, represented by t=3*2.  This 

curve displays the exponential decrease caused by the decay rate, and, in fact, the height of this curve is 

decreases exactly as the exponential e-0.2t.  If this model accurately predicts the population behavior, the 

population will recover from the shock (if we assume within .03 of normal is recovered) based on the 

decay rate. 

 

           

  
       

  
 

 

And for our decay rate, we expect full recovery in 3.66 days (fort=3.66*2). 

 

We will expect similar behavior if we shock the population of the long SOC3 transcript, with the 

exponential dampening behaving like e-0.5t.  See Figure 20. 

 

 
Figure 20:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) with an influx of n2. 

This plot shows the influx of the long SOC3 transcript is dampened even more quickly than the influx of 

the short transcript was.  This exponential damping behaves as predicted, like simple, exponential 

decay.  The recovery time for this population curve is 1.47 days. 

 

 Because the populations are independent of each other in Model 2.1, shocking both at the same 

time produces the effects shown in Figures 19 and 20.  See Figure 21. 

 



 
Figure 21:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) with an influx of n1 and n2. 

This plot shows the recovery of the population curves from influxes of genes. 

 

 This population system can also be shocked by a sudden decrease in the gene population.  For 

example, the population of the short SOC3 transcript may suddenly drop to zero.  See Figure 22. 

 

 
Figure 22:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) when n1 is depleted. 

This plot shows that the population recovers from the depletion of the short SOC3 transcript.  The 

difference between this curve and the normal curve is shown in Figure 23. 

 

 
Figure 23:  Shocked Model 2.1:  Graph of the decrease in n1 (blue) caused by the shock. 

This plot shows that the shock is dampened within approximately 3 days, represented by t=3*2.  The 

population’s deviation from normal decreases like the deviation from normal decreased with the influx 

of genes.   This curve is just a scaled version of the negative of the curve in Figure 19.  The deviation 

decreases exactly as the exponential e-0.2t.  If this model accurately predicts the population behavior, the 

population will recover from the shock (if we assume within .03 of normal is recovered) based on the 

decay rate. 

 



                 

  
         

  
 

 

And for our decay rate, we expect full recovery in 3.12 days (fort=3.12*2). 

 

We will expect similar behavior if we shock the population of the long SOC3 transcript, with the 

exponential dampening behaving like e-0.5t.  See Figure 24. 

 
Figure 24:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) when n2 is depleted. 

This plot shows the depletion of the long SOC3 transcript is corrected even more quickly than the 

depletion of the short transcript was.  This exponential dampening behaves as predicted, like simple, 

exponential decay.  The recovery time for this population curve is 1.25 days. 

 

 Another way the system can experience a shock is if the global transcription rate changes from 

the normal oscillating curve.  The global production rate may persist at peak production for a full day, or 

production could stop for a day.  The production oscillation could speed up or slow down. 

 

 We will consider what happens if the production oscillation changes after the gene populations 

have reached stable oscillation at t=3*2.  First we will let the oscillation speed to twice the normal rate 

for one day, from t=3*2 to t=4*2.  See Figure 25. 

 

 
Figure 25:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) when the oscillation of r(t) (black) increases for a day. 

This plot shows that the faster oscillation of the global production rate causes the oscillation of the 

population curves to increase for that day, and the amplitude of oscillation decreases.  After the global 

production rate returns to normal, the behavior of the population curves quickly returns to normal. 

 



 Now, we will consider how a slower oscillation of the global production rate will affect the gene 

populations.  See Figure 26. 

 
Figure 26:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) when the oscillation of r(t) (black) decreases for 2 days. 

This plot shows that the slower oscillation of the global production rate causes the oscillation of the 

population curves to decrease for that day, and the amplitude of oscillation increases.  After the global 

production rate returns to normal, the behavior of the population curves quickly returns to normal. 

 

 Another anomaly the global production rate may display is that it may stop production for a day.  

See Figure 27. 

 

 
Figure 27:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) when r(t) (black) is zero for a day. 

This plot shows that when global production stops for a day, the gene populations decay.  After the 

global production returns to normal, the population curves quickly resume their normal behavior. 

 

 Now, we will assume the SOC3 gene is produced at the maximum production rate for a day.  See 

Figure 28. 

 

 
Figure 28:  Shocked Model 2.1:  Graph of n1 (blue) and n2 (red) when r(t) (black) is two for one day. 



This plot shows that when the production rate is maximized for a day, the gene populations increase 

toward steady states.  When the global production returns to normal, the population curves quickly 

resume their normal behavior. 

VI.  Conclusions 

 These models were developed to try to create a coherent picture of the populations of two 

transcripts of the SOC3 gene.  The data to which we would like to compare these models is highly 

granular, with only 13 data points over the course of two days.  Because of this granularity, we cannot 

distinguish between most of the models presented.  The behavior of the global transcription rate is 

periodic, but it may be a simple on-off switch or a smooth oscillation.  We will need to check these 

models against less granular data to determine which picture fits best. 

 This research project started with an assumption that the global population of the SOC3 gene 

was constant, and none of the models developed were able to reflect this behavior while using 

reasonable parameters.  Every model appeared to support a different hypothesis – the different 

transcription populations were oscillating inside a global population which also oscillated.  We can 

conclude that the granularity of the data, which is taken every 4 hours over the course of two days, was 

masking an oscillatory behavior in the global population, and that Model 1.0, the fixed lifespan model, 

Model 2.1, the fixed decay rate model, and Model 1.1, which is a hybrid of both models, are good 

predictors of the population behavior. 

 We also shocked Model 2.1 in several different ways, but found that the normal gene 

population behavior persisted.  The gene abundances in the model quickly returned to behavior the 

populations exhibited before the system shock. 
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