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Isometries and Geodesics

Objective

Our goal involves finding isometries of hyperbolic space. That
is, we wish to find isometries mapping one hyperbolic triangle

onto any congruent hyperbolic triangle.
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Isometries and Geodesics

Definition
An Isometry preserves distance.

If f is an isometry and ρ is a metric,

ρ(x , y) = ρ(f (x), f (y)).

Definition
A Geodesic is a locally length-minimizing curve. Isometries
map geodesics onto other geodesics.
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The Hyperbolic Plane

Similar to a Euclidian geometric 2-space, but parallel lines
behave differently
The sum of a triangle’s angles is less than 180◦

Distances are based on powers of e
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Linear Fractional Transformations

Definition
A Linear Fractional Transformation fM is an isometry encoded
by a matrix M ∈ SL2(R). That is, for

M =

[
a b
c d

]
, fM(z) =

az + b
cz + d

where a,b, c,d ∈ R, z ∈ C, and det(M) = 1.
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Finding Geodesics: Semicircles

Given two points z = (z1, z2 and w = (w1,w2), we wish to find
the semicircle centered on the x-axis that passes through both;
this will be a geodesic through the two points.

In order to perform transformations on z and w, we need to find
the geodesic passing through them.
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Finding Geodesics: Semicircles

Using the slope and midpoint formulas, we find the slope m of
the line through z and w to be

m =
w2 − z2

w1 − z1

Z

W
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Finding Geodesics: Semicircles

and the midpoint M of z and w to be

M =

(
z1 + w1

2
,
z2 + w2

2

)
= (P1,P2).

Z

W
M
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Finding Geodesics: Semicircles

Finding the perpendicular bisector of the line segment
connecting z and w and taking its x-intercept, we receive the
center x of the semicircle:

y − P2 = − 1
m
(x − P1)

Z

W
M
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Finding Geodesics: Semicircles

Solving for x , we find that

x = P2m + P1

is the center of the semicircle.

Z

W
M

x
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Finding Geodesics: Results

The coordinates of the center of the semicircle are then

(P2m + P1,0)

To find the radius, we take the distance between the center and
z and receive the radius r :

r =
√

(x − z1)2 + (z2)2
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Z

W
m

L

x

This semicircle is a geodesic between the two points in
hyperbolic space.
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Goal

We now wish to use elementary isometries in R2
+ to map any

hyperbolic triangle to any congruent hyperbolic triangle. This is
equivalent to moving any hyperbolic triangle to a normal
position; namely, (0,1) and (0,P) on the y-axis.

Theorem
We can explicitly construct an isometry mapping any hyperbolic
triangle to any congruent hyperbolic triangle.
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Elementary Operation 1: Translating z

Given a vertex z = z1 + z2i of a hyperbolic triangle, our goal is
to translate this point to the point (0,1). To do this, we first
translate it to the y-axis using the matrix M1:

M1 =

(
1 −z1
0 1

)
fM1(z) =

(z1 + z2i)− z1

1
= z2i.
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Elementary Operation 2: Dilating z

Next, we use a dilation on the point z2i using the matrix M2:

M2 =

(
1√
z2

0
0 z2√

z2

)

fM2(z2i) =
1√
z2
(z2i)
z2√
z2

=
z2i
z2

= i.
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Full Translation and Dilation of z

Thus the matrix M satisfying the constraints for an LFT and
translating z to (0,1) (or 0 + i in complex notation) is equal to
M2 ∗M1:

M = M2 ∗M1 =

 1√
z2

0

0 z2√
z2

 ∗
1 −z1

0 1

 =

 1√
z2
− z1√

z2

0 z2√
z2


fM(z) = fM2M1(z) = fM2(fM1(z)) = i.
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Relocating One Side of a Triangle to the Y-Axis

Next we want to send w to a point (0,P) on the y-axis; that is,

w = (w1,w2)→ (0,P),P > 1.

Applying M to z, we received z′ = (0,1). However, we must
apply the same transformation to w to receive w′:

fM(w) = w′ =
(

w1 − z1

z2
,
w2

z2

)
.
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Elementary Operation 3: The Rotation Matrix K

Now we must rotate the point w′ to the y-axis. To do this, we
use a rotation matrix K (θ).

Definition

K (θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
where θ is the directed angle between the y-axis and the line
tangent to the circle passing through i and w′ at i.
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θ

θz ′ = (0,1)

(x ,0)

w ′
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Results: Applying K to w′

By the previous diagram, θ = arctan( 1
x ), where x is the center

of the circle on the x-axis passing through z and w.

When we apply the LFT fK (z′), we receive (0,1) again, while
applying the LFT to w′ yields

fKM2M1(w)

When simplified, this gives a point (0,P) on the y-axis.
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Results: Applying K to w′

fKM2M1
(w) =

cos


arctan

 2z2(w1−z1)

w2
2 −z2

2+(w1−z1)
2


2

 (
w1−z1

z2
+

w2
z2

i) + sin


arctan

 2z2(w1−z1)

w2
2 −z2

2+(w1−z1)
2


2



− sin


arctan

 2z2(w1−z1)

w2
2 −z2

2+(w1−z1)
2


2

 (
w1−z1

z2
+

w2
z2

i) + cos


arctan

 2z2(w1−z1)

w2
2 −z2

2+(w1−z1)
2


2
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Geometric Construction

Geometrically, this construction is realized by a reflection about
the y-axis and an inversion about a semicircle.
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Theory Behind the R2
+ Case

Recall the formula used for the translation of z:

fM2M1 = fM2(fM1)

Theorem

The fractional linear transformation of a product of matrices is
the composition of fractional linear transformations of the
matrices, that is fAB = fA ◦ fB.
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Theory Behind the H2 Case

Proof.
Let

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.

Plugging A and B into fAB and fA ◦ fB and simplifying, we
receive that fAB = fA ◦ fB.
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3-Dimensional Analogs

When generalized to R3
+:

Reflections across lines become reflections across planes
Inversions about semicircles become inversions about
hemispheres
Matrices in SL2(R) become Vahlen matrices in M2(H)

Rotations become rotations about a vertical axis

Isometries of Hyperbolic Space June 14, 2013 26 / 37



Objective
Background

Elementary Operations in H2

Elementary Operations in H3

Conclusion

Elementary Operation 1: Translation
Elementary Operation 2: Dilation
Elementary Operation 3: Rotation
Results

Quaternions

The quaternions are effectively an extension of the complex
numbers in which i , j , and k are all distinct roots of −1. R3

+ is
the span of 1, i , and j .

j

1 i
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Goal

Given three vertices of a hyperbolic triangle z, w and v, we
wish to send z to the unit vector j = (0,0,1), w to a point above
j on the j-axis, and v to the 1j-plane.
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Elementary Operation 1: Translation

We first translate the hyperbolic triangle by applying an LFT
using a matrix N such that z is sent to the j-axis.

N =

(
1 −z1 − z2i
0 1

)

fN(z) =
(z1 + z2i + z3j) + (−z1 − z2i)

1
= z3j
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Elementary Operation 2: Dilation

After the triangle is translated, we apply an LFT using a matrix
A such that z is dilated from the j-axis to the unit vector j.

A =

( 1
z3

0
0 1

)

fA(z3j) =
1
z3
∗ z3j

1
= j
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Translating w and v

Applying fAN to z, we receive z′ = j. However, we must now
apply fA and fN to w and v. Doing this, we receive

w’ =
(

w1 − z1

z3
,
w2 − z2

z3
,
w3

z3

)
v’ =

(
v1 − z1

z3
,
v2 − z2

z3
,
v3

z3

)
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Elementary Operation 3: Rotation

The points w′ and v′ must now be rotated to the ij-plane. Let V
be a plane that makes an angle φ

2 with the 1j-plane.

B = B2B1 =

(
sin(φ2 )k + cos(φ2 )j 0

0 − sin(φ2 )k + cos(φ2 )j

)(
j 0
0 j

)
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Elementary Operation 3: Rotation

fB fixes z at j and yields z′′. By calculation, we see that

w” = (0,
√

w ′1
2 + w ′2

2,w ′3)

v” = (0,
√

v ′1
2 + v ′2

2, v ′3)

which both lie on the ij-plane.
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A Final Reflection and Inversion

Finally, we need a matrix which will fix z′′, send w′′ to the j-axis,
and keep v′′ in the ij-plane. The matrix C satisfies these
conditions:

C = C2C1 =

(
(h0 + r0)j (r2

2 − (h0 + r0)
2)k

k (h0 + r0)j

)(
j 0
0 j

)
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Results

Through the composition of the matrices C, B, A, and N, we
now have an LFT analagous to the R2

+ case which will fix z,
send w to the j-axis, and send v to the ij-plane. Thus the LFT

fCBAN(w)

yields a point (0,0,P) on the j-axis.

Isometries of Hyperbolic Space June 14, 2013 35 / 37



Objective
Background

Elementary Operations in H2

Elementary Operations in H3

Conclusion

For More Information
Acknowledgements

For More Information...

A more detailed explanation of the R3
+ case, as well as proofs

for the theory used in both the R2
+ and R3

+ cases, can be found
in our paper.

Isometries of Hyperbolic Space June 14, 2013 36 / 37



Objective
Background

Elementary Operations in H2

Elementary Operations in H3

Conclusion

For More Information
Acknowledgements

Acknowledgements

We would like to thank LSU and the SMILE program, supported
by the NSF VIGRE Grant, for hosting us and our research. We
would especially like to thank Kyle Istvan and Dr. Edgar Reyes
for their guidance.

Isometries of Hyperbolic Space June 14, 2013 37 / 37


	Objective
	Isometries and Geodesics

	Background
	Hyperbolic Plane
	Linear Fractional Transformations

	Elementary Operations in H2
	Geodesics: Semicircles
	Elementary Operation 1: Translation
	Elementary Operation 2: Dilation
	Elementary Operation 3: Rotation
	Results

	Elementary Operations in H3
	Elementary Operation 1: Translation
	Elementary Operation 2: Dilation
	Elementary Operation 3: Rotation
	Results

	Conclusion
	For More Information
	Acknowledgements


