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Introduction

3D printers are a growing technology, but
there is currently no objective and widely-used
method of comparing the quality of 3D print-
ers.

The goal of our project is to develop a
good metric for measuring the quality of these
printers. The essential task is to compare an
STL file’s ideal representation in the 3D world,
which is the file sent to the 3D printer to print,
to a real-world printed object. If the objects
are very similar, the printer is essentially very
good. If there are significant differences due
to low resolution or because parts of the object
fall off, then it is a very bad printer.

Our task mathematically is to compare an
STL file to a real-world scan of these objects.
We have to ensure that our comparison is "fair"
in the sense that it compares them once they are
aligned and scaled appropriately. If someone
scans the picture but misplaces or misrotates
it slightly, but the object is a great representa-
tion of the ideal object, it should not see the
skew the metric. Similarly, a bad printed ob-
ject shouldn’t be placed in such a way that the
metric does not identity how truly different the
idealized and ideal objects are.

Then, once the objects are aligned and
scaled appropriately, we can define a metric
to compare them.

Approach

Our approach has two inputs: An STL file rep-
resenting an object to be 3D printed and the 3D
scan of the actual printed object. The scan will
be provided to our algorithm as either a series
of 2D cross sections of the actual object or as a
3D intensity matrix. We will refer to this set of
cross sections as the actual image series and to
the 3D intensity matrix as the actual intensity
matrix. From the STL file we will generate an-
other 3D intensity matrix that we will refer to
as the ideal intensity matrix. In order to align
the actual matrix (or series) to the ideal matrix,
we will use an algorithm we developed that
is described in a later section. Once the two
objects have been aligned, we can then apply
a metric to them in order to determine how
“close” the objects are and assess the printer’s
quality.

Ideal Matrix Creation

One method that we have proposed for creat-
ing an ideal intensity matrix is as follows: First,
we want to assume that all values of both matri-
ces are on a predefined interval. To achieve this,
we can simply apply the following transforma-
tion to the actual 3D intensity matrix where
Ai,j,k is the i, j, kth coordinate of the actual in-
tensity matrix and Amax is the largest value in
the matrix:

Ai,j,k ←
Ai,j,k

Amax
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This transformation guarantees that all points
in the actual intensity matrix are now scaled
down to the [0, 1] interval. Also, the intensity
matrix is a negative image. Intensity values are
lower where the object existed in the scan. For
intuitive purposes and for later calculations,
we can transform this into a positive image
where higher values represent object presence
by applying the following transformation after
the previous transformation:

Ai,j,k ← 1− Ai,j,k

Now that we have applied some transforma-
tions to the actual intensity matrix, we can
proceed with creating an ideal intensity matrix.
We propose accomplishing this by creating a
3D matrix that is a “pixelated” version of the
STL file. That is, we create a matrix of the same
dimension as the actual intensity matrix, and
if given the scale information from the actual
matrix we assume the same scale for the ideal
matrix. Each cell in the ideal matrix now rep-
resents a point in 3-space. One way to fill this
matrix is for each cell in the matrix, we test
if the associated point is on the interior or ex-
terior of the STL file object. If on the interior,
we assign the point as 1, if on the exterior we
assign the point as 0.

Matrix Alignment

Our method of alignment is based off of the as-
sumption that we are printing objects that can
be laid flat. We are also assuming that when
the object is scanned, the person placing the
object on the scanner has placed it on the right
side and with a close angular orientation to the
orientation of our ideal file.

Assuming this, we generate a matrix of
"ideal" values, where the matrix Ai,j,k = 1 if
there is supposed to be matter printed at that
point and 0 otherwise. The size of this ma-
trix corresponds to the amount of pixels in our
scanner.

Then we have our 3D matrix that comes
from the scan of the actual object, which will
will denote Bi,j,k.

Now, we are going to create functions de-
fined over R3 so that we can perform continu-
ous operations such as scaling and rotating in
order to properly align the objects.

Let f (x, y, z) = Around(x),round(y),round(z). So
if the matrix A is essentially a cloud of points
evaluating whether there is mass or not at a
discrete set of points, our function is a filling in
of the 3-space with values 1 or 0 corresponding
to the values at these integer points.

Let g(x, y, z) = 1 if Bround(x),round(y),round(z)
is above a certain numerical threshold σ that
we determine and 0 otherwise. This numeri-
cal threshold exists because B is a 3D matrix
corresponding to a scan of a physical object.
We must set the threshold to correspond to
a number that would realistically come from
a scan of air. Any number above that would
presumably correspond to a point with matter.

Now recall we can find the center of mass
(x′, y′, z′) of a function f (x, y, z) by calculating:

(x′) f =

∫∫∫
f (x, y, z)xdV∫∫∫
f (x, y, z)dV

(y′) f =

∫∫∫
f (x, y, z)ydV∫∫∫
f (x, y, z)dV

(z′) f =

∫∫∫
f (x, y, z)zdV∫∫∫
f (x, y, z)dV

We will first shift our functions by the cen-
ter of the mass, so that now the center of mass
of the object will be moved to the center. A shift
of the object in the direction 〈−x′,−y′,−z′〉 is
given by

fs(x, y, z) = f (x + (x′) f , y + (y′) f , z + (z′) f )

gs(x, y, z) = g(x + (x′)g, y + (y′)g, z + (z′)g)

Doing this moves the center of mass to the
origin for both objects. We do this because our
assumption is that when the objects are prop-
erly aligned, they will have a center of mass
at the same point. Also, we move this point to
the origin, so that when we rotate around the
z-axis, the center of mass remains at the origin.
This way, we avoid having to iterate between
shifting, rotating, reshifting, rotating, etc.

Finally, we do a rotation of the object.
A rotation of gs by θ degrees clockwise can
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be expressed as gs(x cos θ − y sin θ, x sin θ +
y cos θ, z).

Now we must find the rotation that will
maximize overlap between the objects, align-
ing them as closely as possible. We can do this
by finding

max
θ

∫∫∫
[ fs(x, y, z)∗

gs(x cos θ − y sin θ, x sin θ + y cos θ, z)]dV

This maximum will occur whenever there
is a maximum overlap between the two func-
tions, and corresponds to the θ that we must
rotate gs by to properly align the functions. We
can search within a small range around 0 since
our assumption is a human carefully placed
the object and got somewhat close to maximal
alignment. This is computationally very slow,
but can get closer to perfect alignment of an
ideal and real object with enough time. There
is potential for improvement, perhaps a more
iterative process we found in our research that
we did not have time to implement.

Alternative approach to

alignment - Alignment via cross

correlation of Radon transforms

In this approach, the alignment of the ac-
tual intensity matrix (corresponding to the
printed object) to the ideal intensity matrix
(reference, corresponding to the actual object)
is achieved with the use of a method devel-
oped for 3D rotational alignment of particles
in microscopy [1, 2]. The method is based
on cross-correlations of two and three dimen-
sional Radon transforms. The technique can
essentially be described as follows: All possi-
ble two dimensional projections of the actual
object are calculated and used as references
for alignment of the experimental projections
of the printed object by cross-correlation tech-
niques. The Radon transforms provides the
necessary mathematical tool for the alignment
since the three-dimensional Radon transform
contains the same information as a complete
set of two-dimensional projections, in a much

smaller data set and facilitates simultaneous
implementation of translational and rotational
alignment.

The translation and the orientation of the
printed object relative to the reference (ac-
tual object) is determined simultaneously by
calculating a 5 dimensional (3 Euler angles
α, β, γ corresponding to the orientation and
the magnitude and the argument of the shift
vector, rand η) cross-correlation function. The
values of α, β, γ, η and rfor which the cross-
correlation function assumes its maximum de-
fine the alignment of the printed object relative
to the reference.

Definition:
Given a 3 dimensional function f (r) , r =

(x, y, z), its Radon transform is defined as

R ( f (r)) f̂ (p, ξ) =
∫

(r) δ (p− ξ.r) dr ;

δ(p− ξ.r)

determines the plane over which the inte-
gration is carried out

ξ =

 cos (θ) sin (φ)
cos (φ)

sin (θ) sin (φ)


is the unit vector orthogonal to the plane.

Analogously, given a 2 dimensional
function g (r) , r = (x, y), its Radon trans-
form is defined as

R (g(r)) ĝ (p, ζ) =
∫

(r) δ (p− ζ.r) dr ;

δ(p− ξ.r)

determines the line over which the integration
is carried out

ξ =

(
sin(ε)
cos (ε)

)
is the unit vector orthogonal to the line

The two-dimensional Radon transform
can be calculated by calculating all one-
dimensional projections (in small angular in-
crements) of a two-dimensional image. A
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three-dimensional Radon transform can be cal-
culated in two steps, by first calculating all
two-dimensional projections perpendicular to
the x− zplane, followed by a two dimensional
Radon transform of all of the two-dimensional
projections.
Implementation:

Given the three dimensional Radon trans-
form of the reference (actual object), repre-
sented as f̂ (p, φ, θ) which is identified as a
set of integrals over lines defined by the an-
gles θof the two-dimensional projection and
a second angle φ defined by the projecting
direction within the plane at angle θand the
two-dimensional Radon transform of the pro-
jections ĝ (p, ε) identified as the set of inte-
grals over lines at angles εthe method is imple-
mented through a series of computations.

First, the two-dimensional Radon transform
of a projection at Euler angles (α, β, γ) is
extracted from the three-dimensional Radon
transform f̂ (p, φ, θ). Let r̂β,γ

(
p, α

′
)

be this
two-dimensional Radon transform extracted
from f̂ (p, φ, θ) and let ĝ (p, ε) be the two-
dimensional Radon transform of one projec-
tion, where α

′
= α + ε. Then angles φ, θin

the three-dimensional Radon transform belong
to the line at angle εin the two-dimensional
Radon transform of the projection at angles
α, β, γ.

Then to find the orientation and transla-
tional relationship of the printed object relative
to the reference, the cross-correlation function
of the Radon transforms is defined. To achieve
this, the shifting property of the Radon trans-
form has to be used:

R ( f (r− a)) f̂ (p, ξ) =∫
(r− a) δ (p− ξ.r) dr =∫

(s) δ ((p− ξ.a)− ξ.s) ds

The cross- correlation function depending
on the three Euler angles α, β, γand a shift
vector of magnitude r and argument ηis then
defined by;

c (α, β, γ, r, η) =∫∫
r̂β,γ (p, ε) ĝ (p− rsin(ε + η), ε + α) dp dε

For higher computational efficiency this
cross-correlations are calculated by a multipli-
cation of the Fourier transform of the corre-
sponding Radon transforms followed by in-
verse radial Fourier transformation.

The angles α0, β0, γ0, η0 and the value
r0 for which the cross-correlation function as-
sumes its maximum provides the alignment of
the printed object relative to the reference.

Metric

Once the objects are aligned, there are a fair
number of ways to define a metric evaluating
the printer. First, we can print a set of ob-
jects that adequately test the printer’s capabili-
ties. Such test objects might include something
with a long extraneous edge that might easily
break off, a very bumpy object, or a simple
sphere/cube to test its capabilities at a very
basic level.

Then, we can take
∫
|i(x)− r(x)|dx where

i(x) is a function of the ideal object that has
been aligned and scaled. It will be 0 where
there is empty air and 1 where there is sup-
posed to be matter. r(x) is a function of the
scan of the printed structure that has been
aligned and scaled. It can again be 0 where
there is empty air and 1 where is supposed to
be matter.

Alternatively, instead of 1, we can assign
different values that will highlight the impor-
tance of certain parts of the structure. For ex-
ample, the center of a sphere or cube could
have a higher value if we care more about the
3-d printer ensuring that the core of the object
is printed. If the center is hollow, the integral
will be much larger. If we print an objects with
bumps, the bumps could have relatively higher
values if we really want to highlight whether
the printer adequately
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Conclusion

Our group has developed a methodology that
will assist in evaluating the quality of 3D print-
ers. Given an object’s STL file and data from
the 3D scan of a printed object, we can align
the scanned data to match the data from the
STL file and then compare the actual object to
its idealized version. This comparison can then
be used to assess the quality of the print and
used in determining the overall quality of the
printer.
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