Section 4.6  Linear Approximations and Differentials

Topic 1:  Linear Approximation
The figure shown below suggests that if we zoom in on the graph of a smooth function at a point P, the curve approaches its tangent line at P.  This fact is the key to understanding linear approximations.  The idea is to use the line tangent to the curve at P to approximate the value of the function at points near P.
[image: ]




Assume f is differentiable on an interval containing the point a.  The slope of the line tangent to f at  is .  Therefore, an equation of the tangent line is or.



This tangent line represents a new function L that we call the linear approximation to f at the point .  For values near a, . 
[image: ]

Suppose f is differentiable on an interval I containing a.  The linear approximation to f at a is the linear function , for x in I.
Topic 2:  Linear Approximation and Concavity

If f is concave up at , then the graph of L lies below the graph of f near a. 
L underestimates the values of f near a.


If f is concave down at , then the graph of L lies above the graph of f near a. 
L overestimates the values of f near a.

[bookmark: _GoBack][image: ]		[image: ]



Topic 3:  A Variation on Linear Approximation



Relationship Between   and 



Suppose f is differentiable on an open interval I containing a.  The change in the value of f on the interval  can be approximated as  where   is in I.
Summary:  Uses of Linear Approximation
· 

To approximate f near , use .
· 


To approximate the change in the dependent variable  when x changes from a to , use . 


Topic 4:  Differentials
Differentials allow us to distinguish between two related quantities:
· 


the change in the function  as x changes from a to  (which we call ) and
· 


the change in the linear approximation  as  changes from a to  (which we call the differential , defined below).



Let f be differentiable on an open interval containing x.  A small change in x is denoted by the differential .  The corresponding change in f is approximated by the differential .
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