Section 4.8  Newton’s Method

Topic 1:  Deriving Newton’s Method
Newton’s Method is one of the most effective methods for approximating roots, or zeros, of a function when they cannot be found easily using analytical methods.



Assume r is a root of f that we wish to approximate.  This means that .  We also assume that f is differentiable on some interval containing r.  Suppose  is an initial approximation to r that is generally obtained by some preliminary analysis.  A better approximation to r is often obtained by carrying out the following two steps.
· 

Draw a line tangent to the graph of  at the point .
· 

Find the point  where the tangent line intersects the x-axis, and  becomes the new approximation to r.




To improve the approximation of , repeat the two-step process using to determine the next estimate, , and so forth.  For the curve shown, each new approximation is a better approximation to the root r than the previous one.
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Topic 2:  Newton’s Method


Procedure:  Newton’s Method for Approximating Roots of 
1. 
Choose an initial approximation  as close to a root as possible.
2. For n = 0, 1, 2, 3, …


, provided . 
3. End the calculations when a termination condition is met, depending on the level of accuracy required.
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