Section 5.1  Approximating Areas Under Curves

Topic 1:  Area Under a Velocity Curve


Imagine a car traveling at a constant velocity of 60 miles per hour along a straight highway for a two-hour period.  The displacement of the car between  and  can be found by using a familiar formula:

displacement	 



  


This product corresponds to the area of the rectangle formed by the velocity curve and the t-axis between  and  as shown in the graph below.
[image: ]
But in most cases, objects do not move at a constant velocity.  In these cases, the displacement of an object over time can be approximated by dividing the time interval into subintervals, approximating the displacement on each subinterval (by drawing a rectangle), and then finding the sum of the approximations. 


Topic 2:  Approximating Areas by Riemann Sums



Consider a function f that is continuous and nonnegative on the interval .  The goal is to approximate the area of the region R bounded by the graph of f and the x-axis from  to .  
[image: ]

We begin by dividing the interval into n subintervals of equal length, 

 



where  and .  The length of each subinterval, denoted , is found by dividing the length of the entire interval by n.

Regular Partition:  Suppose  is a closed interval containing n subintervals

 





of equal length  with  and .  The endpoints  of the subintervals are called grid points, and they create a regular partition of the interval .  In general, the kth grid point is 


, for .  



In the kth subinterval , we choose any point  and build a rectangle whose height is .  The area of the rectangle on the kth subinterval is


[bookmark: _GoBack], where .
Summing the areas of the rectangles gives an approximation to the area which is called a Riemann sum:

.
Three notable Riemann sums are the left, right, and midpoint Riemann sums.
[image: ]
Riemann Sum





Suppose f is defined on a closed interval , which is divided into n subintervals of equal length .  If  is any point in the kth subinterval , for , then




is called a Riemann sum for f on .  For , this sum is
· 

a left Riemann sum if  is the left endpoint of .
· 

a right Riemann sum if  is the right endpoint of .
· 

a midpoint Riemann sum if  is the midpoint of .

[image: ]	[image: ] [image: ]



Topic 3:  Sigma (Summation) Notation

Sigma (or summation) notation is used to express sums in a compact way.  The symbol   (sigma) stands for sum.

Theorem:  Sums of Powers of Integers
Let n be a positive integer and c be a real number.




 


 




Topic 4:  Riemann Sums Sigma Notation

Left, Right, and Midpoint Riemann Sums in Sigma Notation






Suppose f is defined on a closed interval , which is divided into n subintervals of equal length .  If  is any point in the kth subinterval , for , then the Riemann sum of f on  is

.  
Three cases arise in practice.
· 
left Riemann sum if 
· 
right Riemann sum if 
· 
midpoint Riemann sum if 
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