Constructing Zero Divisor Graphs

Alaina Wickboldt, Louisiana State University
Alonza Terry, Xavier University of Louisiana
Carlos Lopez, Mississippi State University

SMILE 2011
Outline

Introduction/Background
 Ring Theory
 Modular Arithmetic
 Zero Divisor Graphs

Our Methods
 Drawing by hand
 Implementing Computer Coding

Results and Conclusions
 Results
 Conclusion

References
Joint work with:

• Dr. Sandra Spiroff, University of Mississippi

• Dr. Dave Chapman, Louisiana State University
THE PROJECT

To study the various definitions of zero divisor graphs associated to rings, namely those by I. Beck [B] and D. Anderson & P. Livingston [AL].
THE PROJECT

To study the various definitions of zero divisor graphs associated to rings, namely those by I. Beck [B] and D. Anderson & P. Livingston [AL].

- Construct the [AL] graph $\Gamma(R)$ for $R = (\mathbb{Z}_n)$ up to order n, for $n \leq 100$.
- Observe behavior and patterns of each graph.
Relations Between Rings and Graphs

Ring

$\mathbb{Z}/6\mathbb{Z}$

Graph

$\mathbb{Z}/6\mathbb{Z}$

A. Wickboldt, A. Terry, C. Lopez

Constructing Zero Divisor Graphs
A **ring** R is a set together with two binary operations $+$ and \cdot (called addition and multiplication) satisfying the following axioms:
A **ring** R is a set together with two binary operations $+$ and \cdot (called addition and multiplication) satisfying the following axioms:

A. R is an Abelian group under $+$; i.e.,

B. For any a, b in R, ab is in R. *(closure of multiplication)*

C. For any a, b, c in R, $a(bc) = (ab)c$. *(associativity of multiplication)*

D. For any a, b, c in R, $a(b + c) = ab + ac$ and $(a + b)c = ac + bc$. *(distributive property)*
Example

Let R be the integers with arithmetic modulo 6. The elements of R are $\{0, 1, 2, 3, 4, 5\}$, and the operations of addition and multiplication are detailed in the tables below:
Example

Let \(R \) be the integers with arithmetic modulo 6. The elements of \(R \) are \(\{0, 1, 2, 3, 4, 5\} \), and the operations of addition and multiplication are detailed in the tables below:

\[
\begin{array}{cccccc}
+ & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 3 & 4 & 5 & 0 \\
2 & 2 & 3 & 4 & 5 & 0 & 1 \\
3 & 3 & 4 & 5 & 0 & 1 & 2 \\
4 & 4 & 5 & 0 & 1 & 2 & 3 \\
5 & 5 & 0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
* & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 & 5 \\
2 & 0 & 2 & 4 & 0 & 2 & 4 \\
3 & 0 & 3 & 0 & 3 & 0 & 3 \\
4 & 0 & 4 & 2 & 0 & 4 & 2 \\
5 & 0 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]
Zero Divisor Graph: The zero divisor graph of a commutative ring R with identity is a simple graph whose set of vertices consists of all elements of the ring, with an edge defined between a and b if and only if $ab = 0$.
Zero Divisor Graph: The zero divisor graph of a commutative ring R with identity is a simple graph whose set of vertices consists of all elements of the ring, with an edge defined between a and b if and only if $ab = 0$.

Unit: A unit is a non-zero element u in a commutative ring with identity such that there is another non-zero element v of the ring satisfying $uv = 1$.
Complete Graph: A graph is complete if every vertex in the graph is adjacent to every other vertex.
Complete Graph: A graph is complete if every vertex in the graph is adjacent to every other vertex.

Complete Bipartite Graph: A complete bipartite graph is a graph whose vertex set can be partitioned into 2 disjoint subset u_i and v_j such each u_i is adjacent to every v_j, but no two u_i’s are adjacent and no two v_j’s are adjacent.
Definition: [I. Beck, 1988] The (original) **zero divisor graph** of a ring R is a simple graph whose set of vertices consists of all elements of the ring, with an edge defined between a and b if and only if $ab = 0$. It will be denoted by $G(R)$.

\[V(G(\mathbb{Z}_6)) = \{0, 1, 2, 3, 4, 5\} \]

\[E(G(\mathbb{Z}_6)) = \{0, 1, 2, 3, 4, 5\} \]

A. Wickboldt, A. Terry, C. Lopez

Constructing Zero Divisor Graphs
Definition: [I. Beck, 1988] The (original) **zero divisor graph** of a ring R is a simple graph whose set of vertices consists of all elements of the ring, with an edge defined between a and b if and only if $ab = 0$. It will be denoted by $G(R)$.

Example $R = \mathbb{Z}_6$

$V(R) = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$

![Zero Divisor Graph](image-url)
Definition: [D. F. Anderson & P. Livingston, 1999] The **zero divisor graph** of a ring R is a simple graph whose set of vertices consists of all (non-zero) zero divisors, with an edge defined between a and b if and only if $ab = 0$. It will be denoted by $\Gamma(R)$.
Definition: [D. F. Anderson & P. Livingston, 1999] The **zero divisor graph** of a ring R is a simple graph whose set of vertices consists of all (non-zero) zero divisors, with an edge defined between a and b if and only if $ab = 0$. It will be denoted by $\Gamma(R)$.

Example $R = \mathbb{Z}_6$ \quad $V(R) = \mathbb{Z}^*(\mathbb{Z}_6) = \{2, 3, 4\}$

![Graph of \(\Gamma(\mathbb{Z}_6)\)]
Methods

• Our initial approach to this task was to draw as many graphs as we could by hand.

• After many tedious drawings we realized that once you got into larger numbers, the graphs became exceedingly complex to just draw by hand.
To assist us in understanding the properties of the graphs we created better representations of the graphs.
• To assist us in understanding the properties of the graphs we created better representations of the graphs.

• We began to focus on the properties of each number and on its relation with its individual graph.
• Even though we made the graphs a little more presentable it still became a little tedious to draw the graphs of \(\mathbb{Z} \mod n \) for larger \(n \) values.
Even though we made the graphs a little more presentable it still became a little tedious to draw the graphs of $\mathbb{Z} \mod n$ for larger n values.

Mathematical computer programs became our best friend.
MATHEMATICA!!
Results

- Prime Factorization.
- Categories.
One Prime Factors

- Prime numbers have no Anderson and Livingston Graph.
Two Prime Factors

Represented by p and q

- Distinct Case
Two Prime Factors

Represented by p and q

- Distinct Case

Represented by p^2

- Non-Distinct Case
Distinct Case:

Figure: $\Gamma(\mathbb{Z}_{33})$
Non-Distinct Case:

Figure: $\Gamma(\mathbb{Z}_{25})$
Three Prime Factors

This can be represented three different ways.

- p^3
- p^2q
- pqr
First Case: p^3

Figure: $\Gamma(\mathbb{Z}_{27})$
Second Case: $p^2 q$

Figure: $\Gamma(\mathbb{Z}_{18})$
Third Case: pqr

Figure: $\Gamma(\mathbb{Z}_{30})$
Four Prime Factors

This can be represented four different ways.

- p^4
- p^3q
- p^2qr
- p^2q^2
First Case: p^4

Figure: $\Gamma(\mathbb{Z}_{81})$
Second Case: $p^3 q$

Figure: $\Gamma(\mathbb{Z}_{24})$
Third Case: p^2qr

Figure: $\Gamma(\mathbb{Z}_{60})$
Fourth Case: p^2q^2

Figure: $\Gamma(\mathbb{Z}_{36})$
Five Prime Factors
Example: \(p^3 q^2 \)

Figure: \(\Gamma(\mathbb{Z}_{72}) \)
Six Prime Factors
Example: $p^5 q$

Figure: $\Gamma(\mathbb{Z}_{96})$
Just for some fun....
Example

Figure: $\Gamma(\mathbb{Z}_{6561})$
THE CONCLUSION

Based on our study of over 100 zero divisor graphs, we were able to conclude that the complexity of the graph is dependent on the complexity of the prime factorization of the number we are doing modular arithmetic with.
References

2. Dr. Spiroff, Sandra. University of Mississippi.
3. Dr. Chapman, Dave. Louisiana State University.