Coreq Support for Section 3.3

Topic 1: Using the Vertical Line Test
(Video: Functions 6:43 – 11:35)

When an x-coordinate is paired with more than one y-coordinate, a vertical line can be drawn that will intersect the graph at more than one point. We can use this fact to determine whether a relation is also a function. We call this the **vertical line test**.

Topic 2: Using Function Notation
(Video: Functions 13:45 – 20:38)

Consider the linear equation $y = 2x + 1$. This linear equation describes a function because every x-coordinate is paired with exactly one y-coordinate. The variable y is a function of the variable x. We say the variable x is the **independent variable** because any value in the domain can be assigned to x. The variable y is the **dependent variable** because its value depends on x.

The symbol $f(x)$ means function of x and is read “f of x.” This notation is called **function notation**. The equation $y = 2x + 1$ can be written as $f(x) = 2x + 1$ using function notation. These equations have the same meaning. In other words, $y = f(x)$.

The notation $f(1)$ means replace x with 1 and find the resulting y or function value.

\[
\begin{align*}
 f(x) &= 2x + 1 \\
 f(1) &= 2(1) + 1 = 3
\end{align*}
\]

Since $f(1) = 3$, we know the ordered pair $(1,3)$ is a point on the graph of the linear function $f(x) = 2x + 1$.
Topic 3: Determining the Domain and Range of a Function from its Graph

Topic 4: Sketching the Graphs of Linear Functions

A linear function has the form \(f(x) = mx + b \) where \(m \) is the slope of the line and \(b \) represents the \(y \)-coordinate of the \(y \)-intercept.

The **constant function** is defined by the equation \(f(x) = b \), the graph of which is a horizontal line.

The **identity function** defined by \(f(x) = x \) is another linear function with \(m = 1 \) and \(b = 0 \).