Math Tune up Summer 2008

Exercises
Monday August 4

1. Determine which sets of vectors form a basis for the given vector space:
(a) $V=\mathbb{R}^{3}, B=\{(2,1,-2),(-4,2,3),(1,3,5)\}$.
(b) $V=\mathbb{R}^{3}, B=\{(2,1,-2),(-4,2,3),(-8,8,5)\}$.
(c) $V=\mathbb{R}^{4}$, $B=\{(0,1,1,1),(0,0,1,1),(1,0,0,0)\}$.
(d) $V=\mathcal{P}_{3}, B=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}$.
2. Find the coordinates of the vector u with respect to the given basis:
(a) $V=\mathbb{R}^{3}, u=(1,0,0), B=\{(1,1,1),(-1,1,0),(1,0,-1)\}$.
(b) $V=\mathcal{P}_{2}, u=x^{2}-9, B=\left\{1,1+x, 1+x+x^{2}\right\}$.
3. The vector space \mathcal{P}_{3} has different bases such as:

$$
\begin{aligned}
& B_{1}=\left\{1, x, x^{2}, x^{3}\right\} \\
& B_{2}=\left\{1, x-\frac{1}{2}, x^{2}-x+\frac{1}{6}, x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x\right\}
\end{aligned}
$$

The derivative $T=\frac{d}{d x}$ is a linear transformation from \mathcal{P}_{3} into \mathcal{P}_{3}.
(a) Find the matrix associated with T relative to B_{1} (i.e., find the matrix A such that $\frac{d}{d x} p(x)=A p(x)$ for $\left.p \in \mathcal{P}_{3}\right)$.
(b) Find the matrix associated with T relative to B_{2}.
(c) Find $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$.
4. Deternime which of the following sets form a vector space over \mathbb{R}.
(a) The set of all the continuous functions $f:[-1,1] \rightarrow \mathbb{R}$ that satisfy $f(-1)+f(1)=0$.
(b) The set of all the continuous functions $f:[-1,1] \rightarrow \mathbb{R}$ that satisfy $f(-1) \cdot f(1)=0$.
(c) The set of all the continuous functions $f:[-1,1] \rightarrow \mathbb{R}$ that satisfy $\int_{-1}^{1} f(x) d x=0$.
(d) The set of all the continuous functions $f:[-1,1] \rightarrow \mathbb{R}$ that satisfy $\int_{-1}^{1} f^{2}(x) d x=0$.
(e) The set of all the polynomials $p(x)$ with degree $\operatorname{deg}(p)=5$.
(f) The set of all the polynomials $p(x)$ with degree $\operatorname{deg}(p)<5$.
(g) The set $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x-3 z=2\right\}$.
5. Consider $S: \mathcal{P}_{3} \rightarrow \mathbb{R}^{3}$ given by

$$
S p=\left(\int_{-1}^{1} p(x) d x, p(0)+p^{\prime}(0)+\frac{p^{\prime \prime}(0)}{2}+\frac{p^{\prime \prime \prime}(0)}{6}, p^{\prime}(0)-2 p^{\prime \prime}(0)+p^{\prime \prime \prime}(0)\right)
$$

(a) Find the matrix of S relative to $B=\left\{1, x, x^{2}, x^{3}\right\}$ and the canonical basis of \mathbb{R}^{3}.
(b) Solve the equation

$$
S p=(1,1,1)
$$

6. Calculating a basis.

Let

$$
A=\left[\begin{array}{cc}
2 & -2 \\
-1 & 1 \\
1 & -1
\end{array}\right]
$$

and $T \in L\left(\mathbf{R}^{2}, \mathbf{R}^{3}\right)$ defined by

$$
T(x, y)=A\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Calculate a basis for $\operatorname{Ker}(T)$ and for $\operatorname{Img}(T)$.
7. Subspaces.

Let $U=\left\{(x, y, z, w) \in \mathbf{R}^{4}: w=0, z=5 y-2 x\right\}$. Show that U is a subspace of \mathbf{R}^{4}, find a basis for U and show that it is in fact a basis.
8. Find the general solution of the following system of linear equations:

$$
\begin{aligned}
x+2 y+4 z & =4 \\
2 x+3 y+7 z & =3 \\
4 x+5 y+13 z & =1
\end{aligned}
$$

9. Solve (you might want to use Gauss-elimination method)

$$
A x \equiv\left(\begin{array}{lll}
0 & 3 & 1 \\
3 & 3 & 0 \\
1 & 4 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
5 \\
9 \\
6
\end{array}\right)
$$

10. Find the inverse of

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

and then use it to solve

$$
A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right)
$$

To find the inverse of A, write the augmented matrix

$$
\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
1 & 2 & 3 & 0 & 0 & 1
\end{array}\right)
$$

and then reduce it to the Guass-Jordan form.
11. Evaluate the determinant of the following matrices:
(a)

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(b)

$$
B=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 2 & -1 \\
0 & 2 & 7
\end{array}\right)
$$

(c)

$$
C=\left(\begin{array}{cccc}
1 & -1 & 2 & 1 \\
0 & -1 & 5 & 3 \\
-1 & 2 & -3 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

12. Suppose we have four numbers a, b, c, d that were encoded to $1,2,3$, and 4. The encoding algorithm is to multiply the vector $(a, b, c, d)^{T}$ by the matrix $G=$

$$
\left(\begin{array}{rrrr}
1 & -2 & -3 & -4 \\
2 & 3 & -4 & -5 \\
-2 & -1 & 4 & 3 \\
4 & 3 & -1 & -2
\end{array}\right)
$$

to the left side. Try to decode it.
If we change the number field into \mathbb{F}_{2}, and multiply $\left(a_{1}, a_{2}, \ldots, a_{k}\right)^{T}$ to the left side by a $n \times k$ matrix, where $k<n$, the encoding is linear coding.
13. Lagrange Polynomial Interpolation.

In engineering sometimes we want to find the exact form of a function. A polynomial is an excellent candidate. Given a set of points $(-2,7),(-1,4),(0,1),(1,-2)$, find a polynomial of degree 4 that admits these points. In addition, try to give a general process of Lagrange Polynomial Interpolation with n points. Is the degree of the polynomial definitely n ?
14. Curve Fitting.

Find real numbers a, b, and c so that the graph of the function $y=$ $a x^{2}+b x+c$ contains the points $(-1,4),(2,3)$, and $(0,1)$.
15. Least Square Fitting.

Given a set of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, find the best fitting straight line through a set of points. That means, find a straight line $y=a x+b$, i.e., the value of a and b , which minimizes $V=\sum_{i=1}^{n}\left[y_{i}-\right.$ $\left.\left(a x_{i}+b\right)\right]^{2}$. Try to use matrices to solve this problem.

