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Abstract. Wilf’s Conjecture states that there is no n > 2 for
which the complementary Bell number of n, denoted B̃(n), is zero.
Here we study the complementary Bell numbers using a sequence
of polynomials closely related to the complementary Bell numbers.
Studying the complementary Bell numbers in this fashion naturally
leads to the study of an infinite change of basis matrix, P . We
introduce the concepts of Sirling numbers of the second kind, Bell
and complementary Bell numbers, the matrix P , and we evaluate
the structure of Pn for different values of n.

1. Introduction

The notation in this paper will follow that used in a course taught
during the 2012 SMILE program at Louisiana State University by Dr.
Valerio de Angelis from Xavier University of Louisiana. Lecture notes
for this course make up the primary reference for the background infor-
mation. Here we will be studying the sequence {B̃(n)}∞n=1, the sequence
of complementary Bell numbers, with the goal of further understanding
Wilf’s Conjecture. While studying the complementary Bell numbers,
we find that

B̃(n+ j) =
n∑

k=0

λj(k)S(n, k)

where S(n, k) denotes the Stirling number of the second kind for n and
k and λj is a polynomial of degree j satisfying

λj+1(x) = λj(x+ 1)− xλj(x).

We can then rewrite λj(x) in terms of the basis (x)r, the falling facto-
rial, so that we have

λj(x) =

j∑
r=0

cj(r)(x)r.
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From here we find the infinite matrix P that is the focus of this pa-
per. P is the matrix such that cj+1 = Pcj, where cj is the vector
(cj(0), cj(1), cj(2), . . . ). The matrix P has the following form:

P (r, r) = r − 1

P (r, r + 1) = −(r + 1)

P (r + 1, r) = 1

P (r, s) = 0 if |r − s| > 1,

where for convenience we take the convention that r ≥ 0, meaning that
the top-left entry of the matrix is denoted by P (0, 0).

This matrix is central to our approach to the study of the sequence
B̃(n). For instance, observe that

B̃(j) = λj(0) = cj(0) = P j(0, 0).

Thus, by understanding powers of P , we can better understand B̃(n).
To begin this exploration, we introduce the concepts of the p-adic val-
uation, Stirling numbers of the second kind, and complementary Bell
numbers.

2. Stirling numbers of the second kind and bell numbers

Stirling numbers of the second kind and Bell numbers are combi-
natorial objects that represent information regarding the number of
partitions of a finite set. For our purposes, we will use [n] to denote a
finite set with n elements. A partition of a finite set [n] is a collection
of nonempty, disjoint sets whose union is [n]. Each of the sets making
up a partition is called a block. Armed with this terminology, we are
now ready to make the following definition.

Definition 2.1. We define the Stirling numbers of the second kind,
denoted by S(n, k), to be the number of ways to partition [n] into k
blocks, with S(0, 0) defined to be equal to 1.

For example, consider [3], a set with three elements, {a, b, c}. Then
there are three ways to partition this set into two blocks. We could
take {a} and {b, c}, {a, b} and {c}, or {a, c} and {b}. Thus S(3, 2) = 3.

Definition 2.2. We define the Bell number of n, denoted B(n) to be
the number of partitions of [n], or

B(n) =
n∑

k=1

S(n, k).
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In our example above, we found that S(3, 2) = 3. There is only one
way to partition [3] into 1 block, a, b, c, and also one way to partition [3]
into 3 blocks, {a}, {b}, {c}. Thus B(3) = S(3, 1) + S(3, 2) + S(3, 3) =
1 + 3 + 1 = 5.

Definition 2.3. The complementary Bell number of n, B̃(n) is the
number of partitions with an even number of blocks minus the number
of partitions with an odd number of blocks, or

B̃(n) =
n∑

k=1

(−1)kS(n, k).

Once again returning to our example, we found that S(3, 2) was 3, so
there were three ways in total of partitioning [3] into an even number of
blocks. There was one way to partition [3] into one block, and another
with three blocks, so there were two ways to partition [3] into an odd
number of blocks. Hence we see that

B̃(3) = S(3, 2)− (S(3, 1) + S(3, 3)) = 3− (1 + 1) = 1.

For n = 2, it is easy to verify that there is only one partition with
an even number and one with an odd number, meaning that B̃(2) = 0.
This leads us to a conjecture due to Herbert Wilf.

Conjecture 2.4 (Wilf’s Conjecture). B̃(n) = 0 only for n = 2.

This problem remains, as of the writing of this paper, unsolved. It
has been shown that there is at most one other n for which B̃(n) = 0,
but it remains to be seen whether or not this n exists.

It is easy to verify that for the Stirling numbers of the second kind
we have the following recurrence:

S(n+ 1, k) = S(n, k − 1) + kS(n, k).

Using this information, we can make the following proposition.

Proposition 2.5. B̃(n+j) =
∑n+j

k=0(−1)kS(n+j, k) =
∑n

k=0(−1)kλj(k)S(n, k),
where λj(x) are polynomials of degree j defined recursively by

• λ0(k) = 1
• λj+1 = xλj(x)− λ(x+ 1)
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Proof. We proceed by induction. First, assume j = 1. Then we have

B̃(n) =
n+1∑
k=0

(−1)kS(n+, k)

=
n+1∑
k=0

(−1)kS(n, k − 1) +
n+1∑
k=0

(−1)kkS(n, k)

=
n+2∑
k=1

(−1)k+1S(n, k) +
n+1∑
k=0

(−1)kkS(n, k)

=
n∑

k=0

(−1)k+1S(n, k) +
n∑

k=0

(−1)kkS(n, k)

=
n∑

k=0

(−1)k(k − 1)S(n, k)

=
n∑

k=0

(−1)kλ1(k)S(n, k).

Now suppose that the claim holds for some j ∈ N. Then, for j + 1 we
have

n+j+1∑
k=0

(−1)kS(n+ j + 1, k) =

(n+1)+j∑
k=0

(−1)kS(n+ j + 1, k)

=
n+1∑
k=0

(−1)kλj(k)S(n+ 1, k)

=
n+1∑
k=0

(−1)kλj(k)(S(n, k − 1) + kS(n, k))

=
n∑

k=0

(−1)k+1λj(k + 1)S(n, k) +
n∑

k=0

(−1)kkλj(k)S(n, k)

=
n∑

k=0

(−1)k(kλj(k)− λj(k + 1))S(n, k)

=
n∑

k=0

(−1)kλj+1(k)S(n, k).

�

Corollary 2.6. For all j ∈ N, we have that B̃(j) = λj(0).
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We now have a way of expressing B̃(n) in terms of these polynomials,
λn. By rewriting these polynomials using the falling factorial as a basis,
we can now prove the following theorem.

Theorem 2.7. Let P = P (r, s) where r, s ≥ 0 be the infinite matrix
defined by

P (r, r) = r − 1 P (r, r + 1) = −(r + 1)

P (r + 1, r) = 1 P (r, s) = 0 for |r − s| > 1.

Then we have B̃(n) = P n(0, 0).

Proof. Rewriting λn(k) in terms of the falling factorial, we get

λn(k) =
n∑

r=0

cn(r)(k)r.

From the previous proposition, we know that c0(0) = 1, c0(r) = 0 for
all r > 0 and also we have that cn(r) = 0 if r > n. Also, if we let
cn = (cn(0), cn(1), cn(3), . . . ), we see that

cn+1 = Pcn.

Since λn(0) = cn(0) = P n(0, 0), the result follows. �

The previous theorem highlights the significance of this matrix P .
We will now further explore the structure of P n.

3. Powers of The Matrix P

The matrix P , as defined in Theorem 2.7 , has the following form:

−1 −1 0 0 0 0 . . .
1 0 −2 0 0 0 . . .
0 1 1 −3 0 0 . . .
0 0 1 2 −4 0 . . .
0 0 0 1 3 −5 . . .
...

...
...

...
...

...
. . .


Using this information, as well as the definition in Theorem 2.7, we
obtain the following result.

Theorem 3.1. The matrix P 2 has the following form for all r, s ≥ 0:

• P 2(r, r+2) = (r+1)(r+2)
• P 2(r, r+ 1) = −2r2− r+ 1
• P 2(r, r) = r2 − 4r

• P 2(r + 1, r) = 2r − 1
• P 2(r + 2, r) = 1
• P 2(r, s) = 0 if |r − s| > 2
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Proof. For P 2(r, r), we have

P 2(r, r) =
∞∑
k=0

P (r, k)P (k, r)

= P (r, r − 1)P (r − 1, r) + P (r, r)2 + P (r, r + 1)P (r + 1, r)

= 1(−(r − 1)− 1) + (r − 1)2 + (−r − 1)1

= −r + r2 − 2r + 1 + r − 1

= r2 − 4r.

In the case that we have P 2(r, r + 1), we see that

P 2(r, r + 1) =
∞∑
k=0

P (r, k)P (k, r + 1)

= P (r, r)P (r, r + 1) + P (r, r + 1)P (r + 1, r + 1)

= (r − 1)(−r − 1) + (−r − 1)(r)

= −r2 + 1− r2 − r
= −2r2 − r + 1.

When we consider P 2(r, r + 2), we see that

P 2(r, r + 2) =
∞∑
k=0

P (r, k)P (k, r + 2)

= P (r, r + 1)P (r + 1, r + 2)

= (−r − 1)(−(r + 1)− 1)

= (−r − 1)(−r − 2)

= (r + 1)(r + 2).

Looking at P 2(r + 1, r), we get

P 2(r + 1, r) =
∞∑
k=0

P (r + 1, k)P (k, r)

= P (r + 1, r)P (r, r) + P (r + 1, r + 1)P (r + 1, r)

= 1(r − 1) + r(1)

= r − 1 + r

= 2r − 1.
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Lastly, consider the case of P 2(r + 2, r):

P 2(r + 2, r) =
∞∑
k=0

P (r + 2, k)P (k, r)

= P (r + 2, r + 1)P (r + 1, r)

= (1)(1)

= 1

�

Using the same process as in Theorem 3.1, we are able to also obtain
the next two theorems.

Theorem 3.2. The matrix P 3 has the following form:

• P 3(r, r+ 3) = −(r+ 1)(r+
2)(r + 3)
• P 3(r, r + 2) = 3(r)(r +

1)(r + 2)
• P 3(r, r + 1) = −(r +

1)(3r2 − 6r − 2)

• P 3(r, r) = r3− 9r2 + 6r+ 1
• P 3(r + 1, r) = 3r2 − 6r− 2
• P 3(r + 2, r) = 3r
• P 3(r + 3, r) = 1
• P 3(r, s) = 0 if |r − s| > 3

Theorem 3.3. The matrix P 4 has the following form:

• P 4(r, r + 4) = (r + 1)(r +
2)(r + 3)(r + 4)
• P 4(r, r+3) = −2(r+1)(r+

2)(r + 3)(2r + 1)
• P 4(r, r + 2) = (r + 1)(r +

2)(6r2 − 4r − 5)
• P 4(r, r + 1) = −(r +

1)(4r3 − 18r2 − 2r + 1)

• P 4(r, r) = r4−16r3+30r2+
−4r + 1
• P 4(r+ 1, r) = 4r3− 18r2−

2r + 1
• P 4(r + 2, r) = 6r2 − 4r− 5
• P 4(r + 3, r) = 4r + 2
• P 4(r + 4, r) = 1
• P 4(r, s) = 0 if |r − s| > 4

From what we have here, we are able to deduce some properties of
P n.

Theorem 3.4. P j(r, s) = 0 if |r − s| > j for all j ∈ N
Proof. By the definition of P , P 1(r, s) = 0 if |r − s| > 1

Thus the base case, j = 1, holds. Now let us assume that this is true
for some j ∈ N and assume that |r − s| > j + 1. Then

P j+1(r, s) =
∞∑
k=0

P j(r, k)P (k, s)

= P j(r, s− 1)P (s− 1, s) + P j(r, s)P (s, s) + P j(r, s+ 1)P (s+ 1, s).
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Observe that |r−s+1| = |r−s−(−1)| ≥ |r−s|−|−1| > j+1−1 = j,
meaning that P j(r, s − 1) = 0. Also note that |r − s| ≥ j + 1 > j, so
P j(r, s) = 0. And lastly, |r − s − 1| ≥ |r − s| − 1 > j + 1 − 1 = j, so
P j(r, s+ 1) = 0. This yields

P j+1(r, s) = P j(r, s− 1)P (s− 1, s) + P j(r, s)P (s, s) + P j(r, s+ 1)P (s+ 1, s)

= 0 + 0 + 0

= 0.

�

Theorem 3.5. P j(r + j, r) = 1 for all j ∈ N.

Proof. This is true for the base case, j = 1, from the definition of P .
Now let us assume that this is true for P j(r+ j, r). We know from the
definition of matrix multiplication that

P j+1(r + j + 1, r) =
∞∑
k=0

P j(r + j + 1, k)P 1(k, r),

and we know from the definition that P 1
m(r, s) = 0 if |r−s| > 1, meaning

that the only three terms from our sum can be non-zero. Namely

P j+1(r + j + 1, r) =
∞∑
k=0

P j(r + j + 1, k)P 1(k, r)

= P j(r + j + 1, r − 1)P 1(r − 1, r) + P j(r + j + 1, r)P 1(r, r)

+ P j(r + j + 1, r + 1)P 1(r + 1, r)

Note that

|(r + j + 1− (r − 1)| = |r + j + 1− r + 1| = |j + 2| > j,

so by Theorem 3.4

P j(r + j + 1, r − 1) = 0.

Similarly, we see that

|r + j + 1− (r)| = |r + j + 1− r| = |j + 1| > j,

So,
P j(r + j + 1, r) = 0.

The last possible non-zero term is P j(r+j+1, r+1)P 1(r+1, r). Notice
that P j(r + j + 1, r + 1) = 1 by hypothesis, and P (r + 1, r) = 1 by
definition. Thus we have

P j+1(r + j + 1, r) = 1 ∗ 1 = 1,

and the theorem is proved. �
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Theorem 3.6. P j(r, r+j) = (−1)j(r+1)(j) for all j ∈ N, where (x)(j)

denotes the rising factorial.

Proof. For the case that j = 1, observe that P (r, r + 1) = −(r + 1),
and the claim holds. Suppose, then, that P j(r, r+ j) = (−1)j(r+ 1)(j)

for some j ∈ N. Then we have

P j+1(r, r + j + 1) =
∞∑
k=0

P j(r, k)P (r + j, r + j + 1)

= P j(r, r + j)P (r + j, r + j + 1)

( by Theorem 3.4 and definition of P )

= (−1)j(r + 1)(j)(−r − j − 1)

= (−1)j+1(r + 1)(j)(r + j + 1)

= (−1)j+1(r + 1)(j+1)

�

There is also a connection between P j(r, 0) and P j(0, r), and in more
general terms between P j(r, s) and P j(s, r).

Theorem 3.7. (−1)r−sr!P j(r, s) = s!P j(s, r) for all r, s ≥ 0.

Proof. Let us first consider the base case, j = 1. There are four different
scenarios. In the case where |r − s| > 1, we have P (r, s) = P (s, r) =
0, so this scenario is trivial. The case where we have P (r, r) is also
trivial. It is also possible that we have P (r, r + 1), which is equal to

−r − 1 = (−1)r−r+1(r+1)!
(r)!

P (r + 1, r). Lastly, we have P (r + 1, r) = 1 =
(−1)r−(r+1)r!

(r+1)!
P (r, r + 1) = 1. So the relation holds in the base case.
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Now assume that (−1)r−sr!
s!

P j(r, s) = P j(s, r) for some j ∈ N. Then
we have

P j+1(s, r) = (P jP )(s, r)

=
∞∑
k=0

P j(s, k)P (k, r)

= P j(s, r − 1)P (r − 1, r) + P j(s, r)P (r, r) + P j(s, r + 1)P (r + 1, r)

= −rP j(s, r − 1) + (r − 1)P j(s, r) + 1× P j(s, r + 1)

= −r (−1)r−s−1(r − 1)!

s!
P j(r − 1, s) + (r − 1)

(−1)r−sr!

s!
P j(r, s)

+
(−1)r−s+1(r + 1)!

s!
P j(r + 1, s)

=
(−1)r−sr!

s!
P j(r − 1, s) + (r − 1)

(−1)r−sr!

s!
P j(r, s)

+ (−r − 1)
(−1)r−sr!

s!
P j(r + 1, s)

=
(−1)r−sr!

s!
[1× P j(r − 1, s) + (r − 1)P j(r, s) + (−r − 1)P j(r + 1, s)]

=
(−1)r−sr!

s!
[P (r, r − 1)P j(r − 1, s) + P (r, r)P j(r, s)

+ P (r, r + 1)P j(r + 1, s)]

=
(−1)r−sr!

s!
(PP j)(r, s)

=
(−1)r−sr!

s!
P j+1(r, s).

Multiplying both sides by s! yields the result. �

4. Conclusions and Future Work

While the matrix P is infinite, which poses some problems, the struc-
ture is quite regular, with most entries being zero. We were able to find
a few patterns in general and classify all of the structure for powers of
P up to 4. Looking for more general patterns in the structure of powers
of P could lead to more results and a further understanding of Wilf’s
Conjecture, such as finding an analog to Dr. de Angelis’s Fundamental
Structure Lemma for P modulo 3 ∗ 2n for different values of n.

Throughout the SMILE program, we used the 2-adic valuation to
study Wilf’s Conjecture. While time restraints kept us from exploring
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this option, looking at the 2-adic valuation of these matrices may also
yield exciting results.
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