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et The boustrophedon transform of a sequence, a,, produces a
Transform sequence b, by populating a triangle in the following manner:
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Daniel Berry, The transform can be defined more formally using a recurrence
relation. Let the numbers Ty , (k > n > 0) be defined

Tn,O = dap
Introduction

Tin= Tikn-1+ Tk—1,k—n(k > n>0).
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Daniel Berry, The transform can be defined more formally using a recurrence
relation. Let the numbers Ty , (k > n > 0) be defined
Flahert: Tn70 — an

Introduction

Tin= Tikn-1+ Tk—1,k—n(k > n>0).

Now,
bn = 7—n n
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Daniel Berry,

We can think of the boustrophedon triangle as a directed
graph. Using this interpretation, we construct a bijection
between the set of paths beginning at Tgo and ending at T, ,
Results and the set of alternating permutation on [n].
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Let 7(n, n,0) be the set of paths starting at (0,0) and ending
at (n, n). Then there exists a bijection ¢ : w(n, n,0) — DU(n).
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Daniel Berry, . .
: Given a path, we can construct a permutation o = o102 -0,

using:
oai is the f(n — 2j + 1)t element from the left (with the

arrows) of [n] \ {01,002, -+, 001}

Results and
o211 is the f(n — 2j)™ element from the right (against the
arrows) of [n] \ {01,002, -+ ,00j—1} where 0 </ < n. This is

illustrated in later examples.
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o To map a permutation to a path: Given a
0 =0102---0j---0, € DU(n), the set of pairs
{(k, f(k))} where

Sl f(ln=2j)=n+1—{o;:0;i > 02j41,i <2j}| — 02j+1
f(n —2j — 1) = 02j42 — |{0,‘ Fop < 02542, I <2j+ 1}|
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i B @ We map the permutation to a set of vertices fixing a path
‘ on the boustrophedon graph.

o We use

f(n — 2_]) =n+1-— ‘{0‘,’ o> 0‘2j+1,i < 2j}| — 02j+1
f(n—2j—1)=02j40 — {07 : 0 < 02j42,1 < 2j + 1}]

Examples

1
0<j<-jez

to determine the vertex where the path enters the k — th
row, where k =n—2jork=n—-2j—-1
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T4 )S—T4 \3‘—7_4 T4 ,5—7_4 ’8

/7_5,0—>/T5,1—>/7_5,2—>T5,r/)7_5,4—)7_5,5
Te—T65—T6.6—Tg gr—TQG(—TQ&*TQg

Sempls T \7' T T- T-

: LA a5 L L o G
T T TP A A

To,0—To1+—T9o—T93—T94—T95—T96—T9g7>T9.6=>T00

Teg—Ts7—Ts6—Ts
Figure: The path corresponding to Example 1
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@ Following the process outlined in the Path-Permutation
S Bijection Theorem, we generate a permutation from this
Transform path as follows:

Tonstn” o1 = the £(9)™from the right of  {1,2,3,4,5,6,7,8,9} =3
02 = the £(8)from the left of {1,2,4,5,6,7,8,9} =1
03 = the £(7)'from the right of {2,4,5,6,7,8,9} =6
o4 = the £(6)from the left of {2,4,5,7,8,9} =2
Examples o5 = the f(5)thfrom the right of {4,5,7,8,9} =7
o6 = the f(4)from the left of {4,5,8,9)} =4
o7 = the £(3)"from the right of {5,8,9} =9
og = the £(2)'from the left of {5,8} =5
09 = the f(1)"from the right of {8} =8
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@ From this we obtain
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f(9)=9+1-0-8

f(8)=2-0
F(7)

=2

94+41-1-7
3—-1

f(6) =
f(5)

=2

—94+1-2-6

f(4)=1-0
f(3)

Examples
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/7_3,057 %‘Ts 2—% 33

Toa—Tag—Tad—Tas—Tag
T5,0—>T5,1—>7_5,2—/)T5,HT5,4—>T5,5
Tes—T6 gr—)Ts HTan—TQgﬁTQ&ﬁTQQ
Examples T7.0—l71— 7,2—)/ 7,3—)T7,4—/)T7,5—|()T7,6—/>T7,7
Tgg—Tg6—Tg5—T3 #T%hT%kT%ﬁT&&hT&Q

T9,0—’\7_9,1—?,_9,2—)\7_9,3—)\7_9,4—)7—9,3—)7—9,6—)7_9,7—)T9,8—)T9,9

Figure: The path corresponding to Example 2



Example 1

Camoral @ Following the process outlined in the Path-Permutation

S Bijection Theorem, we generate a permutation from this
path as follows:

Transform

Daniel Berry,

Flahert

Examples



Example 1

Umbral
Calculus and

@ Following the process outlined in the Path-Permutation
S Bijection Theorem, we generate a permutation from this
Transform path as follows:

o1 = the £(9)from the right of {1,2,3,4,5,6,7,8,9} =8
02 = the £(8)from the left of {1,2,3,4,5,6,7,9} =2
o3 = the f(7)"from the right of {1,3,4,5,6,7,9} =7
o4 = the £(6)from the left of {1,3,4,5,6,9} =3
Senpie: o5 = the f(5)from the right of {1,4,5,6,9} =6
o6 = the f(4)from the left of {1,4,5,9} =1
o7 = the f(3)'from the right of {4,5,9} =5
og = the £(2)'from the left of {4,9} =4
09 = the £(1)*from the left of {9} =9
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1 2
4 3 1
2 6 9 10
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transform of 32 30 24- 15 5
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1,1,1,2,5,16,61, 272, 1385, 7936, 50521 . ..
1
1 2
4 3 1
2 6 9 10
Boustrophedon
transform of 32 30 24_ 15 5

other
sequences

e Output sequence:
1,2,4,10,32,122,544,2770,15872,101042, . ..
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N e The Catalan numbers:
1,2,5,14,42, 132, 429, 1430, 4862, 16796, . . .

1

10 8 5
14 24 32 37

Boustrophedon
transform of 149 135 1 1 1 79 42

other

sequences

e Output sequence:
1,3,10,37, 149,648, 3039, 15401, 84619, 505500, . . .
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Daniel Berry,

© Download the Online Integer Sequence database (found at
oeis.org)

@ Apply the boustrophedon transform

© Search the database for the resulting sequence

Flahert

Boustrophedon
transform of
other
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Daniel Berry, represents the number of k-digit numbers using digits of
Jonathan . ..
: [k] each exactly once and containing no 3-digit sequence

in increasing or decreasing order

Boustrophedon
transform of
other
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Thansfor Sequence A104854, defined as ay = 2E;11 — Eg,
represents the number of k-digit numbers using digits of
[k] each exactly once and containing no 3-digit sequence
in increasing or decreasing order

o First few terms: 1,1,3,8,27,106,483,2498, 14487, . ..

o First few terms of the boustrophedon transform of
A104854: 1,2,6,22,90,422,2226,13102, 85170, ...

T - @ Matches sequence A226435 for the first 210 terms

transform of

other @ A226435 is defined as the number of permutations of [n]
sequences . . . . .

with fewer than 2 interior elements having values lying
between the values of their neighbors
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@ T(n, k) is defined as the number of permutations of [n]
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between the values of their neighbors
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franstorm @ Sequence A226435 is the 2nd column of the table T(n, k)

an’ (sequence A226441)

@ T(n, k) is defined as the number of permutations of [n]
with fewer than k interior elements having values lying
between the values of their neighbors

@ There may be other combinations of the Euler numbers
which describe columns of this table

Boustrophedon . .

@ It may be possible to develop a general expression for the

transform of

S elements of T(n, k) as a linear combination of the Euler

sequences

numbers



Contents

Umbral
Calculus and
the Boustro-

phedon

Transform

Umbral Calculus
@ Umbral Rules

Umbral
Calculus



Umbral Rules

Umbral
Calculus and
the Boustro-

phedon

Transform

Umbral
Calculus




Umbral Rules

Umbral
Calculus and
the Boustro-

phedon @ Let (a,) be a sequence of real numbers.

Transform

Umbral
Calculus



Umbral Rules

Umbral
Calculus and
the Boustro-

phedon @ Let (a,) be a sequence of real numbers.

Transform

Daniel Berry, @ The exponential generating function (EGF) of (a,) is
given by the formal power series

Flahert 0

A(x) = Z %X”

n=0
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Daniel Berry, @ The exponential generating function (EGF) of (a,) is
given by the formal power series

o

A(x) = Z %X”

n=0

@ By making the substitution of a, to a”, we get

[e.e]

a a"
n.n n ax
Umbral Z | o Z | X €
n! n!

Calculus n=0 n=0
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@ By mapping a, — a" we obtained a closed form for the
EGF of (ap).
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Daniel Berry,
@ By mapping a, — a" we obtained a closed form for the
EGF of (ap).

@ This mapping is known as the umbral substitution.

Flahert
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Daniel Berry,
Jonathan

Broom e By mapping a, — a" we obtained a closed form for the

Dewayne

Dixon, Adam EGF Of (an).

Flahert:
@ This mapping is known as the umbral substitution.

@ We denote it by a, — A” to emphasize that A is actually
an indeterminate.
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Daniel Berry,
@ By mapping a, — a" we obtained a closed form for the
EGF of (ap).

@ This mapping is known as the umbral substitution.

@ We denote it by a, — A” to emphasize that A is actually
an indeterminate.

o Ais called the umbra of (a,).

Umbral
Calculus
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Daniel Berry, ) . .
onath: @ Formally, the umbral substitution can be defined as a

linear functional.

@ A linear functional is a map L: V — [ from a vector
space V into its field of scalars F for which

L(cu+ v) = cL(u) + L(v)

forall uyyv e Vand c € F.

Umbral
Calculus



Umbral Substitution

Umbral
Calculus and
the Boustro-

phedon

Transform

Umbral
Calculus




Umbral Substitution

Umbral
Calculus and
the Boustro-

phedon o Let (a,) be a sequence of real numbers.

Transform

Umbral
Calculus



Umbral Substitution

Umbral
Calculus and
the Boustro-

phedon @ Let (a,) be a sequence of real numbers.

Transform

Daniel Berry, o Let R[A] denote the vector space of polynomials in A with
real coefficients.
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Daniel Berry, o Let R[A] denote the vector space of polynomials in A with

Broon real coefficients.

@ Then we define the umbral substitution to be the linear
functional

L:R[A] =R

given by
L(A") = a,
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o Let R[A] denote the vector space of polynomials in A with
real coefficients.

@ Then we define the umbral substitution to be the linear

functional
L:R[A] =R
given by
L(A™) = a,
Umbral @ Since {A” | n > 0} is a basis of R[A], this defines L on the

Calculus

whole space.
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Daniel Berry,
Jonathan

@ Let (a,) and (b,) be sequences of real numbers.
@ Define L : R[A, B] — R on the basis {A"B™ |n,m > 0} by

L(A"B™) = apbpn

Umbral
Calculus



Umbral Substitution for Multiple Sequences

Umbral
Calculus and
the Boustro-

phedon

Transform

@ Let (a,) and (b,) be sequences of real numbers.
@ Define L : R[A, B] — R on the basis {A"B™ |n,m > 0} by

L(A"B™) = apbpn

o L(A"B™) = L(A")L(B™)

Umbral
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Proposition

Let (an) and (cn) be fixed sequences of real numbers and
define a new sequence (s,) by the transformation

Sp = Z (Z) akCn—k

k=0

Then L(A") = L((S — C)") for all n > 1.

Umbral
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Rt Using umbral calculus we obtained the following formula for

the inverse transformation.
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Umbral
Calculus



Inverse Transform

Umbral
Calculus and
the Boustro-

phedon

Transform

Using umbral calculus we obtained the following formula for
the inverse transformation.

Proposition

The inverse of the transformation is given by the equation

ap = Zn:(—l)”‘k<2) SkCo ik

k=0

Umbral
Calculus
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@ The boustrophedon transform can be defined by the sum

b, = Z <Z> aEn_k
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@ The boustrophedon transform can be defined by the sum

bn = zn: <Z> akEn—k

k=0

@ Using this representation and the previous propositions, we
obtain a formula for the inverse boustrophedon transform.
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@ The boustrophedon transform can be defined by the sum

bn = zn: <Z> akEn—k

k=0

@ Using this representation and the previous propositions, we
obtain a formula for the inverse boustrophedon transform.
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The inverse of the boustrophedon transform is given by the
equation
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N
a, =Y (-1)"* (k) bkEn—x
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The inverse of the boustrophedon transform is given by the

equation
n
[N
an = Z(—l)n k(k) bkEnfk
k=0

forn > 1.

Proof.

Take the sequence (c,) to be the Euler numbers (E,) in
Umbral Proposition 2. O
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@ Can we extend these results to the boustrophedon
transform of sequences in vector spaces other than R?

@ What other sequences have boustrophedon transforms of
combinatorial importance?

@ Are there other interesting sequence transformations with
properties similar to the boustrophedon transform?
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