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Background 
 

The Math Consultation Clinic, coined “MC2,” aims to connect undergraduate and graduate 
students to real-world problems by partnering with businesses, government agencies, and research 
institutions. Through a capstone integrated research course, students apply advanced mathematical 
modeling and computational techniques to address challenges faced by clients, allowing the students to 
gain hands-on experience and professional skills. MC2 enhances the educational mission of the 
Department of Mathematics at LSU, strengthens the ties between LSU and the Louisiana economy, and 
provides clients with affordable technical consulting.  
 

This semester, the DeVision group, a group specifically catered to fulfilling the needs of Xenopus 
laevis laboratories, partnered with the Aquatic Germplasm and Genetic Resources Center at LSU. The 
DeVision group’s main goal was to create an accurate classification system for frog embryos utilizing 
deep learning techniques and StarDist.  
 
 
History and Goals 
 
 The DeVision project began in the summer of 2023 with the primary focus of counting frog 
embryos in petri dishes. The group began with a dataset of 144 images. In the summer of 2024, the project 
shifted towards classification, specifically labeling each embryo as either “viable” or “nonviable.” 
Following this phase, during the fall 2024 semester, the DeVision team utilized the VGG Image Annotator 
(VIA). We used this software to annotate frog egg images this past semester, and it allowed us to assign 
more detailed labels to each embryo with the goal of creating a classification system. A key objective 
throughout this project has been to train a machine learning model using the StarDist Training Interface 
with a target accuracy of at least 90%, which was successfully attained in summer of 2024. Reaching this 
level of accuracy would require consistent annotation, data curation, and refinement of the classification 
criteria across multiple project phases.  
 
Annotation 
 

The process of training the machine learning model 
begins with manual annotations. First, the frog embryo 
images in .jpg format are uploaded into the VGG Image 
Annotator (VIA), an open-source browser-based tool 
designed for manual image annotation. Each embryo is 
then manually outlined using circular regions, with 
partially obscured embryos intentionally excluded from the 
annotation process to maintain consistency. For each 
annotated region, the attribute used is labeled as  
“class_names.” Then, based on the observed cell division 
stage, each embryo is assigned to one of the four categories: “1” for an egg with 
one split, “2” for an egg with two splits, and “3” for an egg with three splits. These 
labels reflect the NF stages 2, 3, and 4 of the Xenopus laevis (Nieuwkoop and 
Faber, 1994). The final label, “0,” corresponds to NF stage 1eggs and nonviable 
embryos. This category includes eggs that either appear unfertilized, show 
abnormal features such as paleness, have an exploded appearance, or appear to 

Figure 1: Non-viable 
embryos of Xenopus 
laevis. 



have three splits. Examples of this category can be seen in Figure 1. Consistency in annotation is critical, 
as poor labeling can lead to misclassification during model training.  

The annotation process 
presented several challenges. First, it 
was extremely time-consuming, as 
each embryo had to be carefully 
outlined. Second, distinguishing 
between the embryos was sometimes 
difficult, especially when the images 
were unclear. Third, maintaining 
consistent labeling across different 
annotators was a bit challenging, 
requiring detailed guidelines and 
frequent communication between the 
members of the group to minimize 
differences in interpretation. 

Once all annotations are 
complete, the data is exported in a .csv 
file format. This file includes columns 
such as the embryo count, region ID, 
shape (circle), and the corresponding 
category label. The “.csv” file 
generated for a labeled image (Figure 
2A), along with the original “.jpeg” 
images (Figure 2B) serve as the input 
for training the StarDist machine 
learning model.  

The annotations are drawn onto an empty 1 channel 
image the same size as the color image, with values 
corresponding to the field “region_id” +1. This value is 
then mapped to the corresponding “class_name” +1 under 
the column “region_attributes.” This can be seen in the 
snapshot of a “.csv” file in Figure 2A. A label mask is then 
generated that displays the output of the entire “.csv” file’s 
data which can be seen in Figure 3.   
 
Deep Learning  
 
 Deep learning is a branch of machine learning that 
uses neural networks with many layers to model complex 
patterns in data. A neural network is made up of 
interconnected nodes organized into the following layers: 
an input layer, one or more hidden layers, and an output 
layer, allowing the network to learn representations of the 
data. During training, the network adjusts the strength of 
connections based on the error between its predictions and 

Figure 2: Result of annotation. A. “.csv” file. B. original 
“.jpeg” image. C. Manually annotated mask image. 
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Figure 3: Label mask generated by ".csv" file 



the true values. StarDist is a deep learning model specifically designed for object detection and 
segmentation, particularly for images containing star-convex shapes like cells or embryos, and it can be 
used through a graphical user interface (GUI) that simplifies the training and prediction process. StarDist 
predicts the distance to an object’s boundaries along 32 radial distances that are fixed and evenly spaced. 
In the DeVision project, we used the StarDist GUI, seen in Figure 4, to train a model on our own manually 
annotated frog embryo images and classify embryos based on their division stage.  

As previously mentioned, the goal for this semester’s DeVision project is to develop a StarDist 
model that can classify embryos. To train a multiclass StarDist model with color using the Python 
bindings, three things are required. First a tensor- which is a higher dimensional matrix representing image 
data- of the input color image in the shape “ 𝑤 × ℎ × 3”, a tensor of the label image in the shape 
“𝑤 × ℎ × 1,” and a mapping between object instances and the desired predicted classes. The GUI makes 
it easy for the user to upload the training data, adjust model parameters, and monitor the progress of 
training. Throughout the process, we aimed to improve the model’s accuracy by ensuring that the 
annotations were consistent. Once trained with several images, the model was evaluated based on its 
ability to correctly classify images into one of the four defined categories.  
 
 
  

Figure 4: Graphical User Interface (GUI) 



Results 
 

  

 

  

Figure 5: Density of Class 0 Embryos Figure 6: Density of Class 1 Embryos 

Figure 7: Density of Class 2 Embryos Figure 8: Density of Class 3 Embryos 



 
 
 
 
  
 
 

Figure 9: Loss function to determine model accuracy 

Figure 10: Distance loss graph  

Figure 11: Probability loss graph 

Figure 12: Metrics with IOU at different epochs 

Figure 13: Successful Predicted Label Instances Figure 14: Unsuccessful Predicted Label 
Instances 



Discussion 
 

The heatmaps seen in Figures 5, 6, 7, and 8 illustrate the distribution of embryos across the 
different classes. Each heat map highlights where embryos of a particular stage are concentrated within 
the images. This visualization allows us to quickly identify trends, such as whether certain classes are 
more clustered or evenly spread out.  
 A loss function, seen in Figure 9, was used to evaluate the model’s accuracy. The result of applying 
this function is seen in Figures 10 and 11. The distance loss for both training and validation losses started 
around 30 and decreased to 5 by epochs 50, 100, 150, 200, and 250. The probability loss for training and 
validation started at 0.5 and dropped sharply to around 0.25 by epoch 10. The training and validation 
curves for both losses progressed closely across all epochs, representing the model’s consistent learning 
without major overfitting. In Figure 12, the model’s performance metrics- precision, recall, accuracy, and 
F1 score- are presented. These values provide a comprehensive evaluation of how well the model can 
classify the embryos after several epochs.  
 Predicted label instances from the trained StarDist model are shown in Figures 13 and 14. Figure 
13 displays the model’s output with a classification accuracy of 59%. This result indicates that while the 
model was beginning to learn patterns in the data, further training and refinement were necessary to 
improve performance. Figure 14 shows another result, where the model performed poorly, achieving 0% 
precision and recall. This suggests that the model was unable to correctly classify any embryos in that 
instance, likely due to issues such as overfitting, insufficient training data, or inconsistencies in the 
annotations. These results highlight the challenges involved in training deep learning models and the 
importance of careful evaluation and adjustment throughout the process. 
 
Future Work 
 
 There are several directions for future work on the DeVision project. First, expanding the training 
dataset by manually annotating more embryo images would likely improve model performance, 
particularly in underrepresented classes. Another important goal would be to continue increasing the 
model’s accuracy, precision, and recall percentages through additional training and parameter tuning. 
Improving annotation consistency across all annotators will also be crucial to minimize variability in the 
dataset. The StarDist GUI that was used only supports equations for circles, but future teams may also 
explore augmenting the dataset by applying rotations, flips, or other transformations to existing images to 
artificially expand the training set.  

We would love for researchers to one day use this model within their own laboratories. Ultimately, 
a successful model would significantly reduce the amount of manual labor needed for embryo 
classification. By automating the classification process, researchers could save valuable time and 
resources, allowing them to focus more on experimental design and data analysis rather than tedious 
manual counting and categorization. A reliable model would also help standardize embryo classification 
across different laboratories, minimizing human error. In the long term, this tool could be adapted for 
other species or similar biological studies that require early developmental stage assessment. With 
continued improvement, the DeVision model has the potential to become an essential resource in 
developmental biology research.  
 
 
  



Conclusion 
 

Over the course of the Spring 2025 semester, the DeVision group made significant progress toward 
developing a deep learning model capable of classifying frog embryos by their division stage. Beginning 
with manual annotation through the VGG Image Annotator, we worked to build a consistent and detailed 
training dataset. Despite challenges related to annotation time, image clarity, and classification 
consistency, we successfully prepared data for use in the StarDist GUI and trained a multiclass model. 
While early results showed moderate accuracy and some inconsistencies, the work established a strong 
foundation for future improvements. Through additional training, expansion of the dataset, and further 
refinement of parameters, the model’s performance is expected to improve. Ultimately, this project 
demonstrates the potential of combining mathematical modeling, deep learning, and biological research. 
Our goal remains to develop a model that researchers can reliably use in their laboratories. The DeVision 
project continues to grow, and future work will build on this semester’s accomplishments to move closer 
to that vision. 
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