

Multi-Class Quantification of Xenopus Frog Embryos

DeVision Team Fall 2024

Louisiana State University

August 2, 2024

Evaluation Metrics-Results

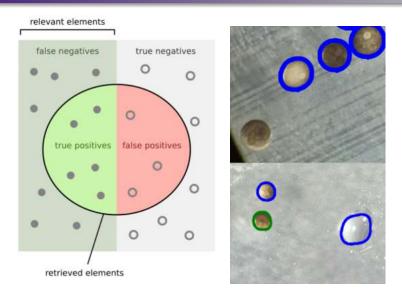


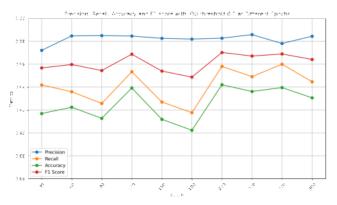
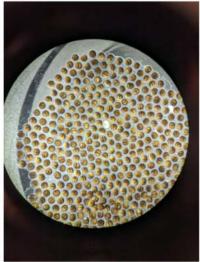
Figure 1: True positive, False positives

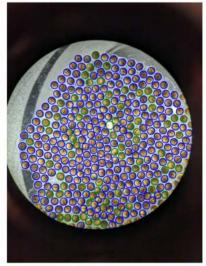
Evaluation Metrics-Tests & Results

- Precision = TP / (TP + FP)
- Recall = TP / (TP + FN)
- $F1 = (2 \times Precision \times Recall) / (Precision + Recall)$
- $\bullet \ \mathsf{Accuracy} = \mathsf{TP} \ / \ (\mathsf{TP} + \mathsf{FP} + \mathsf{FN})$

Evaluation Metrics-Tests & Results

- Precision = TP / (TP + FP)
- Recall = TP / (TP + FN)
- $F1 = (2 \times Precision \times Recall) / (Precision + Recall)$
- Accuracy = TP / (TP + FP + FN)


Figure 3: Metrics with IOU 0.5 at Different Epochs

Multi Class Prediction

Input image

Predicted label instances Predicted objects: 346 (Class 1: 71, Class 2: 275)

Accuracy Results

File	Count	Pred	TP	FP	FN	Accuracy
Img_0	225	226	225	1	0	99.56%
lmg_1	134	136	134	2	0	98.53%
Img_2	283	283	283	0	0	100.00%
Img_3	346	346	346	0	0	100.00%
lmg_4	242	229	229	0	13	94.63%
lmg_5	350	349	349	0	1	99.71%
lmg_6	294	294	293	1	1	99.32%
lmg_7	180	177	174	3	6	95.08%
Img_8	292	290	290	0	2	99.32%
:	•	:	:	:	:	:
Img_18	205	205	205	0	0	100.00%
lmg_19	198	199	198	1	0	99.50%
Img_20	176	172	172	0	4	97.73%
lmg_21	221	219	219	0	2	99.10%
Img_22	193	193	193	0	0	100.00%
Img_23	196	193	193	0	3	98.47%
Img_24	232	228	228	0	4	98.28%
Total	5467	5436	5421	15	46	98.89%

Future Work in Fall 2024

- We aim to use the VGG Image Annotator to effectively label embryos as fertilized or unfertilized.
- Labeling these embryos as such will allow us to train the Mask RCNN model to effectively classify the fertilization status.
- In contrast to the Summer 2024 project that used ImageJ and Stardist to annotate and train the model, we will be using VGG and Mask RCNN for our Fall 2024 project.
- The code we used for this project was an old model of RCNN with outdated packages. Our plan for the future is to figure out how to import the older Python packages so that they are compatible with the RCNN model that we are working with.

Acknowledgements

We would like to thank

- Prof. Peter Wolenski and Dr. Nadejda Drenska for guiding and supporting us.
- Department of Mathematics utility of "Chaos".
- AGGRC
 - Terrence Tiersch, Director
 - Dr. Yue Liu, Assistant Director
 - Dr. Jack Koch
- MBL
 - Dr. Carl Anderson from Marine Biological Laboratory, University of Chicago.
- Nikkos Svoboda, Computer Analyst -high-performance computing system "Chaos".

Thank You for Listening!