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Abstract. First of all this paper discusses details of the gamma
function and explores some of its properties. Next, some of the
properties of Laguerre functions are shown as well as how these
functions relate to Laplace Transforms. In further study, differen-
tial equations and properties of Laplace transform will be used to
calculate the Laplace transform of functions. Finally, many points
of linear recursion relations will be explored and the Laplace trans-
form will be used to solve them.

1. The Gamma Function

2. Laguerre Polynomials

Abstract. A polynomial p(x) in powers of x is a finite sum of
terms like

(2.1) p(x) =
n∑

k=0

akx
k

where k is a non-negative integer. The set of orthogonal polynomi-
als contains polynomials that vanish when the product of any two
different ones, multiplied by a function w(x), called a weight func-
tion, are integrated over a certain interval. This makes it possible
to expand an arbitrary function f(x) as a sum of the polynomials,
each multiplied by a coefficient c(k), which is uniquely determined
by integration. The Laguerre polynomials are orthogonal on the
interval from 0 to ∞ with respect to the weight function w(x) =
e−x . They also have many interesting properties and identities
some of which involve differential operators, recursion and integra-
tion. The Laplace transform is used to prove them here.

2.1. Laguerre’s equation. The equation

(2.2) ty′′ + (1− t)y′ + ny = 0,
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where n is a nonnegative intger, is known as Laguerre’s equation of
order n. This differential equation possesses the polynomial solution

(2.3) ln(t) =
n∑
k=0

n!(−1)ktk

(k!)2(n− k)!

The function ln(t) is known as the Laguerre polynomial of degree n.
For n 6= m,

(2.4)

∫ ∞
0

e−tln(t)lm(t)dt = 0.
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2.2. Graph of Laguerre Polynomial. Maple Heading 1 Maple Text
Output Maple Dash Item Maple Bullet Item Maple Normal Maple
Heading 4 Maple Heading 3 Maple Heading 2 Maple Warning Maple
Title Maple Error Maple Hyperlink Maple 2D Math Maple Maple Input
Maple 2D Output Maple 2D Input active2drestart; 1

active2dLaguerreL(3, t); 1

inert2dLaguerreL(3, t)

LaguerreL (3, t)

active2dl0 := simplify( inert2dl0 := 1-3*x+(3/2)*x2 − (1/6) ∗
x3l3 := 1− 3 t+ 3/2 t2 − 1/6 t3 active2dplot(l0, x = -5 .. 10); 1

Laguerreplot2d1.eps active2d

The first few Laguerre polynomials are:

l0 = 1

l1 = −t+ 1

l2 =
1

2
(t2 − 4t+ 2)

l3 =
1

6
(−t3 + 9t2 − 18t+ 6)

2.3. Differential Operators.

Theorem 2.1. Let

E− = tD2 +D

An = tD2 + (1− t)D + n

with the Laguerre polynomial denoted as ln. Then

E−ln = −nln−1

Proof. Let

E− = An + tD − n
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Multiply both sides of the equation by ln.

E−ln = [An + tD − n]ln = −nln−1

tl′n − nln = −nln−1

−tl′n + nln = nln−1

Then, we proceed in transform space. So, apply the Laplace transform

to both sides of the equation with Ln = L{ln} = (s−1)n

sn+1 and simplify.

L{−tl′n + nln} = −[−(sLn(s)− ln(0))]′ + nLn

= −[−(Ln + sL′n)] + nLn

= Ln + sL′n + nLn

= sL′n + (1 + n)Ln

= s[
(s− 1)n

sn+1
]′ + (1 + n)

(s− 1)n

sn+1

= s[
n(s− 1)n−1(s− 1)n+1 − (n+ 1)sn(s− 1)n

s2n+2
]

+(1 + n)
(s− 1)n

sn+1

=
n(s− 1)n−1s2 − (n+ 1)(s− 1)ns

sn+2
+ (1 + n)

(s− 1)ns

sn+2

=
n(s− 1)n−1

sn−1

= nL{ln−1}(s)

�

Theorem 2.2. Let

EO = 2tD2 + (2− 2t)D − 1

An = tD2 + (1− t)D + n

Anln = 0

with the Laguerre polynomial denoted as ln. Then

EOln = −(2n+ 1)ln

Proof. Multiply An by 2

2An = 2tD2 + 2(1− t)D + 2n

2Anln = [2tD2 + 2(1− t)D + 2n]ln

0 = [2tD2 + 2(1− t)D + 2n]ln
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Add −(2n+ 1)ln to both sides of the equation and simplify

−(2n+ 1)ln = [2tD2 + 2(1− t)D + 2n]ln − (2n+ 1)ln

−(2n+ 1)ln = [2tD2 + 2(1− t)D − 1]ln

−(2n+ 1)ln = EOln

�

Theorem 2.3. Let

E+ = tD2 + (1− 2t)D + (t− 1)

An = tD2 + (1− t)D + n

Anln = 0

Then

E+ln = −(n+ 1)ln+1

Proof. Let

E+ = An − tD − (1− t− n)

Multiply by ln

E+ln = [An − tD − (1− t− n)]ln = −(n+ 1)ln+1

−tl′n − (1− t+ n)ln = −(n+ 1)ln+1

tl′n + (1− t+ n)ln = (n+ 1)ln+1
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Then, we proceed in transform space. So, apply the Laplace transform

to both sides of the equation. Let Ln = L{ln} = (s−1)n

sn+1

L{tl′n + (1− t+ n)ln} = −(sLn(s)− ln(0))′ + (1 + n)Ln(s) + L′n(s)

= −(Ln + sL′n) + (1 + n)Ln + L′n
= −(s− 1)L′n + nLn

= −(s− 1)[
(s− 1)n

sn+1
]′ + n[

(s− 1)n

sn+1
]

= −(s− 1)[
n(s− 1)n−1(s− 1)n+1 − (n+ 1)sn(s− 1)n

s2n+2
]

+n[
(s− 1)n

sn+1
]

= −(s− 1)[
n(s− 1)n−1(s− 1)s− (n+ 1)(s− 1)n

sn+2
]

+n[
(s− 1)n

sn+1
]

= −(s− 1)[
(s− 1)n−1[ns− (n+ 1)(s− 1)]

sn+2
] +

n(s− 1)n

sn+1

=
−(s− 1)n(n− s+ 1)

sn+2
+
n(s− 1)n

sn+1

=
(s− 1)n(−n+ s− 1 + ns)

sn+2

=
(s− 1)n(n+ 1)(s− 1)

sn+2

= (n+ 1)
(s− 1)n+1

sn+2

= (n+ 1)L{ln+1}(s)

�

2.4. Lie Bracket.

Theorem 2.4. The Lie Bracket is defined as [A,B] = AB −BA. Let

EO = 2tD2 + (2− 2t)D − 1

E+ = tD2 + (1− 2t)D + (t− 1)

Then

[E0, E+] = −2E0
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Proof. Let

[E0, E+] = −2E0 = E0E+ − E+E0(2.5)

E0E+ = 2tE
′′

+ + (2− 2t)E
′

+ − E+(2.6)

E+E0 = tE
′′

0 + (1− 2t)E
′

0 + (t− 1)E0(2.7)

and

−2E+ = −2tD2 + (−2 + 4t)D + (−2t+ 2)(2.8)

We must find the first and second derivatives of E0

E0 = 2tD2 + (2− 2t)D − 1

E
′

0 = 2tD3 + (4− 2t)D2 − 3D

E
′′

0 = 2tD4 + (6− 2t)D3 − 5D2

Now, we must find the first and second derivatives of E+

E+ = tD2 + (1− 2t)D + t− 1

Note that in the operator, t− 1 means (t− 1)f(t), so we have

d

dt
[t− 1] =

d

dt
[(t− 1)f(t)] = (t− 1)f

′
(t) + f(t) = (t− 1)D + 1

Using that we get

E
′

+ = tD3 + (2− 2t)D2 + (t− 3)D + 1

and

E
′′

+ = tD4 + (3− 2t)D3 + (t− 5)D2 + 2D

Now, we substitute in the derivatives into (6) and (7)

E0E+ = 2tE
′′

+ + (2− 2t)E
′

+ − E+

= 2t[tD4 + (3− 2t)D3 + (t− 5)D2 + 2D] + (2− 2t)[tD3 + (2− 2t)D2 + (t− 3)D + 1]

−[tD2 + (1− 2t)D + t− 1]

= 2t2D4 +D3[6t− 4t2 + 2t− 2t2] +D2[2t2 − 10t+ 4− 8t+ 4t2 − t]
+D[4t+ (2− 2t)(t− 3) + 2t− 1] + 2− 2t− t+ 1

= 2t2D4 + (−6t2 + 8t)D3 + (6t2 − 19t+ 4)D2 + (−2t2 + 14t− 7)D − 3t+ 3
7



E+E0 = tE
′′

0 + (1− 2t)E
′

0 + (t− 1)E0

= t[2tD4 + (6− 2t)D3 − 5D2] + (1− 2t)[2tD3 + (4− 2t)D2 − 3D]

+(t− 1)[2tD2 + (2− 2t)D − 1]

= 2t2D4 +D3[6t− 2t2 + 2t− 4t2] +D2[−5t+ 4− 10t+ 4t2 + 2t2 − 2t]

+D[6t− 3− 2t2 + 4t− 2]− t+ 1

= 2t2D4 + (−6t2 + 8t)D3 + (6t2 − 17t+ 4)D2 + (−2t2 + 10t− 5)D − t+ 1

Now, we plug everything into (5)

E0E+ − E+E0 = (2t2 − 2t2)D4 + [(−6t2 + 8t)− (−6t2 + 8t)]D3 + [(6t2 − 19t+ 4)

−(6t2 − 17t+ 4)]D2 + [(−2t2 + 14t− 7)− (−2t2 + 10t− 5)]D

−3t+ 3− (−t+ 1)

= −2tD2 + (4t− 2)D − 2t+ 2

Then using (5) and (8) we conclude that

[E0, E+] = −2E+

�

2.5. Properties of the Laguerre Function.

Theorem 2.5. Let

L{ln(at)} =
n∑
k=0

(nk)(−1)kakL{ t
k

k!
}

Then

L{ln(at)} =
(s− a)n

sn+1
when a ∈ <

Proof. We take the Laplace transform of the summation and simplify

L{ln(at)} =
n∑
k=0

(nk)(−1)kakL{ t
k

k!
}

=
n∑
k=0

(nk)(−1)kak
1

sk+1

=
1

sn+1

n∑
k=0

(nk)(−a)ksn−k

following from the binomial theorem,

(s+ a)n =
n∑
k=0

(nk)aksn−k
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we get

(s− a)n =
n∑
k=0

(nk)(−a)ksn−k

So,

L{ln(at)} =
1

sn+1

n∑
k=0

(nk)(−a)ksn−k =
(s− a)n

sn+1

�

Theorem 2.6.

n∑
k=0

(nk)aklk(t)(1− a)n−k = ln(at)

Proof. Apply the Laplace transform.

L{
n∑
k=0

(nk)aklk(t)(1− a)n−k} = L{ln(at)}

L{
n∑
k=0

(nk)aklk(t)(1− a)n−k} =
n∑
k=0

(nk)ak
(s− 1)k

sk+1
(1− a)n−k

=
1

s

n∑
k=0

(nk)ak
(s− 1)k

sk
(1− a)n−k

=
1

s

n∑
k=0

(nk)(a− a

s
)k(1− a)n−k

using the binomial theorem, we get

1

s

n∑
k=0

(nk)(a− a

s
)k(1− a)n−k =

1

s
(1− a+ a− a

s
)n

=
1

s
(1− a

s
)n

=
1

s
(
s− a
s

)n

=
(s− a)n

sn+1

L{
n∑
k=0

(nk)aklk(t)(1− a)n−k} = L{ln(at)}
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By taking the inverse Laplace transform, we can conclude that
n∑
k=0

(nk)aklk(t)(1− a)n−k = ln(at)

�

Theorem 2.7.
∫ t

0
ln(x)dx = ln(t)− ln+1(t)

Proof. We know that ln ∗ 1(t) =
∫ t

0
ln(x)dx

By the convolution theorem, we also know that

L{ln ∗ 1}(s) = L{ln}L{1}
So we take the Laplace transform of ln and 1

L{ln}L{1} =
1

s

(s− 1)n

sn+1

L{ln}L{1} = (1− s− 1

s
)
(s− 1)n

sn+1

Since
L{ln ∗ 1}(s) = L{ln}L{1}

we have

L{ln ∗ 1}(s) =
(s− 1)n

sn+1
− (s− 1)n+1

sn+2

L{ln ∗ 1}(s) = L{ln}(s)− L{ln+1}(s)
Apply the inverse Laplace transform

ln ∗ 1 = ln(t)− ln+1(t)

By convolution, we can conlude that∫ t

0

ln(x)dx = ln(t)− ln+1(t)

�

Theorem 2.8.
∫ t

0
ln(x)lm(t− x)dx = lm+n(t)− lm+n+1(t)

Proof. We know that ln ∗ lm(t) =
∫ t

0
ln(x)lm(t− x)dx

By the convolution theorem, we also know that

L{ln ∗ lm}(s) = L{ln}L{lm}
So we take the Laplace transform of ln and lm

L{ln}L{lm} =
(s− 1)n

sn+1

(s− 1)m

sm+1

L{ln}L{lm} = (1− s− 1

s
)
(s− 1)n+m

sn+m+1
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Since

L{ln ∗ lm}(s) = L{ln}L{lm}

we have

L{ln ∗ lm}(s) =
(s− 1)n+m

sn+m+1
− (s− 1)m+n+1

sm+n+2

L{ln ∗ lm}(s) = L{ln+m}(s)− L{ln+m+1}(s)

Apply the inverse Laplace transform

ln ∗ lm = lm+n(t)− lm+n+1(t)

By convolution, we can conlude that

∫ t

0

ln(x)lm(t− x)dx = lm+n(t)− lm+n+1(t)

�

Theorem 2.9. Recursion formula.

ln+1(t) =
1

n+ 1
[(2n+ 1− t)ln(t)− nln−1(t)]
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Proof. Apply the Laplace transform to both sides of the equation and

simplify. Let Ln = L{ln} = (s−1)n

sn+1

L{ln+1(t)} = L{ 1

n+ 1
[(2n+ 1− t)ln(t)− nln−1(t)]}

=
1

n+ 1
[(2n+ 1)Ln + L′n − nLn−1]

=
1

n+ 1
[(2n+ 1)[

(s− 1)n

sn+1
] + [

(s− 1)n

sn+1
]′ − n[

(s− 1)n−1

sn
]]

=
1

n+ 1
[(2n+ 1)

(s− 1)n

sn+1
+
n(s− 1)n−1(s)n+1 − (n+ 1)sn(s− 1)n

s2n+2

−n(s− 1)n−1

sn
]

=
1

n+ 1
[(2n+ 1)

(s− 1)n

sn+1
+
n(s− 1)n−1s− (n+ 1)(s− 1)n

sn+2
− n(s− 1)n−1

sn
]

=
1

n+ 1
[(2n+ 1)

(s− 1)n−1(s(s− 1))

sn+2
+
n(s− 1)n−1s− (n+ 1)(s− 1)n

sn+2

−ns
2(s− 1)n−1

sn+2
]

=
1

n+ 1
(
(s− 1)n−1

sn+2
)[(2n+ 1)(s(s− 1)) + (n− s+ 1)− ns2]

=
1

n+ 1
(
(s− 1)n−1

sn+2
)[(n+ 1)(s− 1)2]

=
(s− 1)n−1

sn+2
(s− 1)2

=
(s− 1)n+1

sn+2

= L{ln+1(t)}

By applying the inverse Laplace transform we can conclude that

ln+1(t) =
1

n+ 1
[(2n+ 1− t)ln(t)− nln−1(t)]

�

3. Using Differential Equations to Compute Laplace
Transforms

3.1. Introduction. The Laplace transform of a function, F(t), is

f(s) =

∫ ∞
0

e−atF (t)dt.
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Theorem ?? and Table 1 are based on this definition.

Theorem 3.1. If f(s) = L{F (t)}, then

(1) sf(s)− F (0) = L{F ′(t)}
(2) f ′(s) = L{−tF (t)}

Therefore, the following table is created.

f(s) F (t)
x X

sx−X(0) X ′

s2x− sX(0)−X ′(0) X ′′

−x′ tX
−sx′ − x tX ′

−s2x′ − 2sx+X(0) tX ′′

x′′ t2X
sx′′ + 2x′ t2X ′

s2x′′ + 4sx′ + 2x t2X ′′

Table 1. Basic Laplace Transforms

There are several other theorems that will also be useful to solve
Laplace Transforms using differential equations.

Theorem 3.2. If X(t) ∼ Atα(α > −1) as t→ 0,

x(s) ∼ AΓ(α + 1)

sα+1
as s→∞

Theorem 3.3. If X(t) ∼ Btβ(β > −1) as t→∞,

x(s) ∼ BΓ(β + 1)

sβ+1
as s→ 0

3.2. Method 1. The first method used to compute Laplace Trans-
forms uses Table ?? above to find the proper differential equations.

Theorem 3.4. The Laplace Transform of the zeroth-order Bessel Func-
tion is the following:

L{J0(t)} =
1√
s2 + 1

and the Laplace Transform of the first-order Bessel Function is:

L{J1(t)} =

√
s2 + 1− s√
s2 + 1

13



Proof of Theorem ??. The Laplace Transform of the zeroth-order Bessel
Function, denoted J0(t), is the solution of the differential equation
tX ′′ + X ′ + tX = 0. By applying Table ?? to get the Laplace Trans-
form, one can derive the equation s2x′−2sx+X(0)+sx−X(0)−x′ = 0.
Putting this into the standard form of the differential equation gives:

x′ +
s

s2 + 1
x = 0.

In order to solve this differential equation, one has to find the Integrat-
ing factor, which is defined by

I(t) = e

∫
s

s2 + 1
ds

By solving the integral and simplifying, the integrating factor is shown
to be

√
s2 + 1. Multiplying the differential equation by the integrating

factor gives
√
s2 + 1 x′+

√
s2 + 1 s

s2+1
x = 0, and integrating both sides

of the equation gives
√
s2 + 1 x = c, where c is the integration constant.

From this we can see that x(s) = c√
s2+1

. According to Theorem ??,

c = 1 because x(s) ∼ 1/s as s→∞. Therefore,

L{J0(t)} =
1√
s2 + 1

.

In order to derive L{J1(t)}, the equality J ′0(t) = −J1(t) and Theorem
?? are used by placing F (t) = J0(t) and F ′(t) = −J1(t). Then

L{J1(t)} =

√
s2 + 1− s√
s2 + 1

and the Theorem is proved.
�

Theorem 3.5. The Laplace Transform of the function X(t) = sin a
√
t

can be stated as:

L{sin a
√
t} =

a
√
π

2s3/2
e
−a2

4s

Proof of Theorem ??. In order to prove this theorem, the equation
X(t) = sin(a

√
t) must be used. To find a differential equation to

solve for x(s) one must take the derivative twice and set the equation
equal to zero to get the constants. Putting these 3 equations together
to equal zero results in the differential equation 4tX ′′+2X ′+a2X = 0.
Using the table, one can then take the Laplace transform of this equa-
tion showing that 4(−s2x′ − 2sx + 4X(0)) + 2(sx −X(0)) + a2x = 0.

14



By simplifying and changing to the standard form of the differential
equation, the result is

x′ +
6s− a2

4s2
x = −2X(0).

Multiplying by the integrating factor of e
a2

4s s3/2 shows that the equation

is the product rule of (e
a2

4s s3/2x)′ = 0. Integrating and dividing gives

x(s) =
ce
−a2

4s

s3/2

where c is the integrating constant. One can see that X(t) ∼ a
√
t when

t→ 0, so according to Theorem ?? x(s) ∼ a
√
π

2s3/2 when s→∞ because

Γ(3/2) =
√
π

2
. Therefore, c = a

√
π

2
because x(s) is also similar to c

s3/2 .
When c is plugged in c, the final result is

L{sin a
√
t} =

a
√
π

2s3/2
e
−a2

4s .

�

Theorem 3.6. The Laplace Transform of the zeroth-order Bessel Func-
tion with a

√
t plugged in is shown as:

L{J0(a
√
t)} =

e
−a2

4s

s

Proof of Theorem ??. By taking the zeroth-order Bessel Function and
plugging in a

√
t, one gets that X(t) = J0(a

√
t), which can be solved

by the differential equation 4tX ′′+4X ′+a2X = 0. Taking the Laplace
transform of this equation gives 4(−s2x′−2sx+X(0))+4(sx−X(0))+
a2x = 0. Through simplification and division, the standard form of the
differential equation is the following:

x′ +
4s− a2

4s2
x = 0.

The simplified integrating factor for this equation is I = e
a2

4s s. By mul-
tiplying the integrating factor by the differential equation, recognizing
the product rule, integrating, and solving for x, the result is

x(s) =
ce
−a2

4s

s
15



According to Theorem ??, since X(t) ∼ 1 as t → 0, then x(s) ∼ 1/s
as s→∞. Therefore, c = 1 and

L{J0(a
√
t)} =

e
−a2

4s

s
.

�

3.3. Method 2. This new method requires another table to be con-
structed.

f(s) F (t)
x X
x′ −tX
x′′ t2X

sx−X0 X ′

sx′ −tX ′ −X
sx′′ t2X ′ + 2tX

s2x− sX0 −X1 X ′′

s2x′ +X0 −tX ′′ − 2X ′

s2x′′ t2X ′′ + 4tX ′ + 2X
Table 2. Inverse Laplace Transforms

Here X0 = lims→∞ sx(s) and X1 = lims→∞ (s2x(s)− sX0)

Theorem 3.7. Note the following equality:

e−a
√
s

√
s

= L{e
−a2

4t

√
πt
}

Proof of Theorem ??. In order to prove the equality true, one must
begin with the equation

x(s) =
e−a
√
s

√
s
.

Then the equation will be differentiated twice and simplified to get the
differential equation,

4sx′′ + 6x′ − a2x = 0.

By taking the inverse Laplace transform using Table 2, the result is
4t2X ′ + 8tX − 6tX − a2X, which can be simplified and put in the
standard form of the differential equation to give:

X ′ +
2t− a2

4t2
X = 0.

16



The integrating factor of this equation is
√
te
−a2

4t . When this is multi-
plied by the equation and solved for X(t), the result is

X(t) =
ce
−a2

4t

√
t

According to Theorem ??, since X(t) ∼ c√
t

as t→∞, then x(s) ∼ c
√
π√
s

as s → 0 because Γ(1/2) =
√
π. Then c = 1√

π
, because x(s) is also

similar to 1√
s

as s→ 0. By plugging in the value of c to the expression

of X(t), the result is the following:

e−a
√
s

√
s

= L{e
−a2

4t

√
πt
},

thus proving the theorem.
�

Theorem 3.8. The Bessel Differential Equation of the nth order can
be defined as

t2X ′′ + tX ′ + (t2 − n2)X = 0

where the solutions of this differential equation are the nth order Bessel
Functions.

Proof of Theorem ??. From the end of Example 1 comes the equation

x(s) =
(
√
s2 + 1− s)n√
s2 + 1

. In order to solve for the original equation, one must take the first and
second derivative and combine to form a differential equation. The
first derivative is x′(s) = and the second derivative is x′′(s) =. The
resulting differential equation is

(s2 + 1)x′′ + 3sx′ + (1− n2)x = 0

To take the inverse Laplace transform of this equation, one can use the
Table ?? to get

t2X ′′ + tX ′ + (t2 − n2)X = 0

This equation is the Differential Bessel’s Equation of nth order. There-
fore, using Theorem ??, X(t) must equal Jn(t).

�

Theorem 3.9. The following Laplace Transform can be shown:

es−
√
s2+1

√
s2 + 1

= L{J0(
√
t2 + 2t)}.
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This example displays a more difficult problem to solve and requires
supplementing Table 2 with additional entries.

f(s) F (t)
x′′′ −t3X
s2x′′′ −t3X ′′ − 6t2X ′ − 6tX

Table 3. Additional Inverse Laplace Transforms

Proof of Theorem ??. To prove Theorem ??, one starts with the equa-
tion

x(s) =
es−
√
s2+1

√
s2 + 1

.

The equation is then differentiated three times and the equations are
combined those equations to find the differential equation:

(s2 + 1)x′′′ − (3s2 − 5s+ 3)x′′ + (2s2 − 10s+ 7)x′ + (2s− 5)x = 0.

From Table 2 and Table 3, the inverse Laplace Transform of the equa-
tion is (−t3−3t2−2t)X ′′+(−t2−12t−2)X ′+(−t3−3t2−3t−1)X = 0,
which simplifies to

(t+ 1)(t2 + 2t)X ′′ + (t2 + 2t+ 2)X ′ + (t+ 1)3X = 0.

When a variable, y, is set equal to t2 + 2t, then this substitution can
be plugged into the equation to get 4yX ′′(y) + 4X ′(y) + X(y) = 0.
By observation this differential equation is a form of the equation from
Theorem ?? where

L{J0(a
√
t)} =

e
−a2

4s

s
,

which solves the differential equation, 4tX ′′+ 4X ′+a2X = 0. Then by
substituting y for t, this shows

es−
√
s2+1

√
s2 + 1

= L{J0(
√
t2 + 2t)}.

�

These theorems demonstrate how to calculate Laplace transforms by
using differential equations. The properties of the Laplace Transform
shown in the tables and solving the associated differential equations
makes calculating Laplace transforms much easier.
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4. Laplace Transform and Linear Recursion Relations

Abstract. In this part of the project we will be talking about how
to use the Laplace transform to solve linear recursion relations.
More specifically, we are looking at linear recursion relations of
order 2 which have the form:

an+2 + ban+1 + can = f(n),

where b and c are real numbers and f(n) is a known sequence. Our
goal is to find a closed formula for an. We will see how the Laplace
transform could help us in solving these relations.

4.1. Introduction. In order to solve the linear recursion relations or-
der 2: an+2 + ban+1 + can = f(n), we let y(t) = an, and f(t) = f(n)
for n ≤ t < n+ 1 where n = 0, 1, 2, . . .. Now the relation becomes:

y(t+ 2) + by(t+ 1) + cy(t) = f(t)

Now take the Laplace transform of both sides, we have:

L{y(t+ 2)}+ bL{y(t+ 1)}+ cL{y(t)} = L{f(t)}(4.1)

In later sections, we will learn how to simplify the left side of Equation
(??) in terms of Y (s) = L{y(t)}, and also how to compute the Laplace
transform of the right side, sometimes called the forcing function.
After we have the closed form of Y (s), we will see how we could compute
the Laplace inverse of that closed form to get the closed form of the
sequence {an}.

4.2. Basic Laplace Transform Formulas.

4.2.1. Dealing with the left side. We will need the following proposition
to simplify the left side of Equation (??):

Proposition 4.1. With notation as above we have

L{y(t+ 1)} = esY (s)− a0e
s(1− e−s)
s

(4.2)

L{y(t+ 2)} = e2sY (s)− es(1− e−s)(a0e
s + a1)

s
(4.3)

with Y (s) = L{y(t)}.
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Proof. 1 Let u = t+ 1, we have:

L{y(t+ 1)} =

∫ ∞
0

e−sty(t+ 1)dt

= es
∫ ∞

1

e−suy(u)du

= es
∫ ∞

0

e−suy(u)du− es
∫ 1

0

e−suy(u)du

= esY (s)− es
∫ 1

0

e−sua0du

= esY (s)− a0e
s(1− e−s)
s

using the fact that Y (t) = a0 for 0 ≤ t < 1. This proves Equation (??).
Let u = t+ 2, we have:

L{y(t+ 2)} =

∫ ∞
0

e−sty(t+ 2)dt

= e2s
∫ ∞

2

e−suy(u)du

= e2s
[∫ ∞

0

e−suy(u)du−
∫ 1

0

e−suy(u)du

−
∫ 2

1

e−suy(u)du

]
= e2sY (s)− e2s

∫ 1

0

e−sua0du− e2s
∫ 2

1

e−sua1du

= e2sY (s)− a0e
2s(1− e−s)

s
− a1e

2s(e−s − e−2s)

s

= e2sY (s)− es(1− e−s)(a0e
s + a1)

s

This proves Equation (??). �

Now we have successfully expressed L{y(t+ 2)} and L{y(t+ 1)} in
terms of Y (s) = L{y(t)}, so we could express the left side of (1) in
form of Y (s).

4.2.2. Dealing with the right side. Next let’s see how we can deal with
the right side of Equation (??), finding the L{f(t)}. To do this, we

1These 2 identities and their proofs are taken from [?].
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need to use the Heaviside function hc(t) and on-off switch χ[a,b) that
are defined as followed:

hc(t) =

{
0 if 0 ≤ t < c,

1 if c ≤ t.

χ[a,b) =

{
1 if a ≤ t < b ,

0, elsewhere.

It is easy to prove that χ[a,b) = ha−hb. Also we will need the following
formula to compute the Laplace transform of our functions:

L{hc(t)} =
e−sc

s

This formula and also its proof can be found in [?].
Let’s first express f(t) in terms of Heaviside functions.

f(t) =



f(0) , if 0 ≤ t < 1 ,

f(1) , if 1 ≤ t < 2,
...

f(n) , if n ≤ t < n+ 1,
...

= f(0)χ[0,1) + f(1)χ[1,2) + . . .

= f(0) (h0 − h1) + f(1) (h1 − h2) + . . .

= f(0) + h1 (f(1)− f(0)) + h2 (f(2)− f(1)) + . . .

Now we have enough information to compute the Laplace transform
for f(t).

L{f(t)} =
f(0)

s
+

(f(1)− f(0)) e−s

s
+

(f(2)− f(1)) e−2s

s
+ . . .

=
1

s

(
f(0)(1− e−s) + e−sf(1)(1− e−s) + · · ·

)
=

1− e−s

s
·
∞∑
k=0

e−skf(k)

So we can write

(4.4) L{f(t)} =
1− e−s

s
G(s),

where G(s) =
∑∞

k=0 e
−skf(k). Below are some formulas regarding some

simple forcing functions.
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Proposition 4.2.

L{f(t) = k} =
k

s

L{f(t) = rn, n ≤ t < n+ 1} =
1− e−s

s(1− re−s)
(4.5)

L{f(t) = n, n ≤ t < n+ 1} =
e−s

s(1− e−s)
Proof. From (??), we have:

G(s) = k
∞∑
i=0

e−si =
k

1− e−s

Of course we need s > 0 to use that geometric series formula. Now
according to Equation (??), we will have L{f(t) = k} = k

s
.

When f(n) = rn, with r is a constant. We have:

G(s) =
∞∑
k=0

e−skrk =
∞∑
k=0

(re−s)k =
1

1− re−s

Again, we need to limit s such that: |re−s| < 1, so we could use the
geometric series formula. Now according to (??), we have:

L{f(t) = rn, n ≤ t < n+ 1} =
1− e−s

s(1− re−s)
When f(n) = n:

G(s) =
∞∑
k=0

ke−ks

=
∞∑
k=0

− d

ds

[
e−ks

]
= − d

ds

[
∞∑
k=0

e−ks

]

= − d

ds

[
1

1− e−s

]
=

e−s

(1− e−s)2

Again, from (??) we will have:

L{f(t) = n, n ≤ t < n+ 1} =
e−s

s(1− e−s)
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Other kinds of forcing functions f(n) will be introduced later.

5. The Homogeneous Case

Here we want to consider a recursion relation of the form

an+2 − ban+1 + can = 0,

where b and c are real numbers. Such an equation is called homoge-
nous. To get an idea of the general result let’s consider the following
example. Let’s look at a very famous sequence, the Fibonacci sequence,
which can be rewritten as:

an+2 − an+1 − an = 0,

where the initial conditions are a0 = 0 and a1 = 1. After setting up
the y(t) and taking the Laplace transform we have:

Y (s) =
es(1− e−s)

s
· 1

e2s − es − 1

Let r = es. Then we can write e2s−es−1 = r2−r−1 = (r−α)(r−β),

with α = 1+
√

5
2

and β = 1−
√

5
2

. Using partial fractions we have:

Y (s) =
es(1− e−s)

s
· 1

(es − α)(es − β)

=
es(1− e−s)
s(α− β)

·
(

1

es − α
− 1

es − β

)
=

1− e−s

s(α− β)
·
(

1

1− αe−s
− 1

1− βe−s

)
By Proposition ??, we have

an =
1

α− β
(αn − βn)

=
1√
5
·

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]
.

With this example as our guide we obtain the following theorem.

Theorem 5.1. The general solution of a linear recursion relation of
order 2: an+2 + ban+1 + can = 0 will be determined by its characteristic
polynomial x2 + bx+ c as following:
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1. If x2 + bx + c = 0 has 2 separate real roots (α, β), the general
solution would have the form of:

an = Aαn +Bβn

2. If x2 +bx+c = 0 has a double root α, the general solution would
have the form of:

an = (An+B)αn

3. If x2 + bx + c = 0 has 2 complex roots (α + iβ, α − iβ), the
general solution would have the form of:

an = un(A cos(nθ) +B sin(nθ))

with u =
√
α2 + β2, θ = sin−1 β

u
, and A, B are real constants

in all cases.

Proof. From the relation equation, we take the Laplace transform for
both sides and then use our formulas (??) and (??), we have:

(5.1) Y (s) =
es(1− e−s)

s
· k1e

s + k2

e2s + bes + c

with k1 = a0 + a0b, k2 = a1. Now:

1. If x2 + bx + c = 0 has 2 separate real roots (α, β), we could
rewrite Y (s) as:

Y (s) =
1− e−s

s
· k2e

−s + k1

(1− αe−s)(1− βe−s)
Then using partial fraction will give us:

Y (s) =
1− e−s

s
·
(

k3

1− αe−s
+

k4

1− βe−s

)
Now use formula (??) we will have:

an = k3α
n + k4β

n

with k3 and k4 are 2 real constants.
2. If x2 + bx+ c = 0 has a double root α. We can rewrite Y (s) as:

Y (s) =
1− e−s

s
· k2e

−s + k1

(1− αe−s)2

Using partial fraction will give us:

Y (s) =
1− e−s

s
·
(

k5

(1− αe−s)2
+

k6

1− αe−s

)
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Now we need to use (??) to compute the function f(n) which

corresponds to the Laplace function of 1−e−s

s
· 1

(1−αe−s)2
. We

have:

1

(1− αe−s)2
=

1

1− αe−s
· 1

1− αe−s

=

(
∞∑
k=0

e−skαk

)
·

(
∞∑
k=0

e−skαk

)
=

(
1 + αe−s + α2e−2s + . . .

)
·(

1 + αe−s + α2e−2s + . . .
)

= 1 + 2αe−s + 3α2e−2s + . . .

=
∞∑
k=0

e−sk(k + 1)αk

Therefore: f(n) = (n + 1)αn. Now using this to compute the
Laplace transform of Y (s) will give us the general solution in
the form of:

an = (An+B)αn

3. If x2 + bx+ c = 0 has 2 complex roots (α+ iβ, α− iβ), with α
and β are 2 real constants. From (??) we have:

Y (s) =
1− e−s

s
· k2e

−s + k1

(1− (α + iβ)e−s) (1− (α− iβ)e−s)

Using partial fraction gives us:

Y (s) =
1− e−s

s
·
(

k7

1− (α + iβ)e−s
+

k8

1− (α− iβ)e−s

)
with:

k7 =
k1β − (k2 + αk1)i

2β

k8 =
k1β + (k2 + αk1)i

2β

Now use the Laplace inverse, we will have:

an = k7(α + iβ)n + k8(α− iβ)n

Note that we could express α± iβ as
√
α2 + β2(cos θ ± i sin θ)

with θ = sin−1 β√
α2+β2

. Let’s call u =
√
α2 + β2. Use the De
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Moivre’s formula we will have:

an = k7u
n (cos(nθ) + i sin(nθ)) + k8u

n (cos(nθ)− i sin(nθ))

= (k7 + k8)u
n cos(nθ) + iun sin(nθ)(k7 − k8)

= k1u
n cos(nθ) +

k2 + αk1

β
· un sin(nθ)

an = un (A cos(nθ) +B sin(nθ))

�

5.1. Non-homogenous Recursion Relations. The following theo-
rems are some theorems that gives us great insight into how to deal
with non-homogeneous cases.

Theorem 5.2. Let an,p be a fixed particular solution to the second
order linear recursion relation

an+2 + ban+1 + can = f(n).

Then any other solution has the form an = an,h + an,p, for some homo-
geneous solution an,h.

Proof. The theorem follows from linearity of the recursion relation
equation. �

Theorem 5.3. Let an,p1 and an,p2 be particular solutions of the follow-
ing relations respectively:

an+2 + ban+1 + can = f1(n)

an+2 + ban+1 + can = f2(n)

then a particular solution of the following relation

an+2 + ban+1 + can = f(n)

with f(n) = f1(n) + f2(n), will have the form of:

an,p = an,p1 + an,p2

Proof. Again the theorem follows from linearity of the recursion rela-
tion equation. �

The biggest problem in solving a non-homogeneous case is to find
the particular solution. This will be discussed later in this section after
we know some more formulas. For now let’s look at an example first.
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5.2. Example. Find the closed form of an which is defined by the
following relation:

an+2 − 5an+1 + 6an = 4n, a0 = 0, a1 = 1.

After taking the Laplace transform and simplifying, we have:

Y (s) =
1− e−s

2s
·
(

1

1− 4e−s
− 1

1− 2e−s

)
Taking the Laplace inverse will give us:

an =
1

2
(4n − 2n)

Note that if we want to use our theorem for this example, our general
homogeneous solution have the form of:

an,h = c13
n + c22

n

Later on we will know that our general particular solution in this case
is:

an,p = c34
n

So our general solution would be:

an = c13
n + c22

n + c34
n

In this case, c1 happens to be zero. However, if we solve this relation in
the homogeneous case, we will have our solution to be: an = 3n − 2n.
Now we can see that the existence of the forcing function does not
only add more terms to the general solution but it also changes the
coefficients of the terms in the homogeneous solution.

5.2.1. Dealing with the forcing function. Suppose f(n) is a forcing func-

tion with Laplace transform of the form F (s) = p1(e−s)
sq1(e−s)

, where p1 and

q1 are polynomials. Here we will consider recursion relations of the
form

an+2 + ban+1 + can = f(n).

After taking the Laplace transform for both sides and simplifying, we
have the following kind of equation:

(e2s + bes + c)Y (s) =
p(e−s)

sq(e−s)
,

again, where p and q are polynomials. The characteristic polynomial
can be factored into 2 (or it can be one) factors (es − α) and (es − β),
with α and β can be real or complex numbers. Also, since we do not
limit our numbers in the real set, our polynomial q(e−s) can also be
factored into a product of terms in the form of (1 − re−s). Note that
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the terms that we just mentioned are interchangeable. For example:
(es − α) = es(1− αe−s). So we could rewrite our equation as:

Y (s) =
1

s
· p(e−s)∏

(1− rke−s)pe−sq

Now we can use partial fraction to break it into simple fractions like:

Y (s) =
1

s
·
∑ ci

(1− rke−s)p

One might wonder what if we have terms like 1
e−s ? Actually the term

e−s does appear sometimes in the denominator but when we get to
this stage, after we have everything in simple fractions type, we will
never have the fraction 1

e−s , which is es. We can prove this easily by
using the fact that Y (s) needs to go to zero when s goes to infinity.
While all terms 1

s(1−re−s)p goes to zero when s goes to infinity, es

s
on

the other hand goes to infinity. Therefore, lims→∞ Y (s) 6= 0. So, by
contradiction, we have proved that we will never have the fraction 1

e−s

in our final step.
Now all we need to do is to find the general formula for those kind

of fractions. Let H(n, p) be a function such that:

∞∑
k=0

e−skH(k, p) =
1

(1− re−s)p

We will use induction method to prove the following proposition:

Proposition 5.4.

(5.2) H(n, p) =
rn

(p− 1)!
·
p−1∏
k=1

(n+ k)

Proof. When p = 1, we need to prove that H(n, 1) = rn. This is
obviously true according to our formula (??). Now suppose (??) is
true from 1 to p, we will need to prove that it’s also true for p+ 1. We
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have:
∞∑
k=0

e−skH(k, p+ 1) =
1

(1− re−s)p+1

=
1

e−sp
· d
dr

[
1

(1− re−s)p

]
=

1

e−sp
· d
dr

[
∞∑
k=0

e−skH(k, p)

]

=
1

p
· d
dr

[
∞∑
k=0

e−s(k−1)H(k, p)

]

=
1

p
·
∞∑
k=0

(
e−s(k−1) · d

dr
[H(k, p)]

)
Now look at the formula (??), we have H(0, p) does not depend on the
value of r. Therefore, its first derivative with respect to r is zero. So
now in the summation, we just need k from 1 to ∞. But we want to
match up with the left side of the equation, so we need to change it to
0→∞. After doing this, we will have:

∞∑
k=0

e−skH(k, p+ 1) =
1

p
·
∞∑
k=0

e−sk
d

dr
[H(k + 1, p)]

H(n, p+ 1) =
1

p
· d
dr

[H(n+ 1, p)]

=
1

p
· d
dr

[
rn+1

(p− 1)!
·
p−1∏
k=1

(n+ 1 + k)

]

=
(n+ 1)rn

p!
·
p−1∏
k=1

(n+ 1 + k)

H(n, p+ 1) =
rn

p!
·

p∏
k=1

(n+ k)

This means our formula (??) is also true for p + 1. By induction, we
have proved that (??) is true for all p > 0. �

Note that with the way we defined H(n, p), H(n, p) is not the Laplace
inverse function of the fraction 1

(1−re−s)p . Instead:

(5.3) H(n, p) = L−1{1− e−s

s
· 1

(1− re−s)p
}
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Luckily, when we try to compute Y (s), we usually get terms that have

a common factor of 1−e−s

s
. If we encounter some terms like 1

s(1−re−s)p

by itself, then we just need to multiply the numerator and denominator
by (1− e−s) and then use partial fraction to express 1

(1−e−s)(1−re−s)p in

terms of 1
1−e−s , and 1

(1−re−s)k , with 0 < k ≤ p. Finally, use the formula

of H(n, p) to compute the Laplace inverse of Y (s). Now let’s look at
an example to see how we could use (??).

5.2.2. Example. Find the closed form of an which is defined by the
following relation:

an+2 − 5an+1 + 6an = n2n, a0 = 0, a1 = 1

First, let’s calculate the Laplace transform of the right side. From (??),
we have:

L{f(t)} =
1− e−s

s
·
∞∑
k=0

e−skk2k

=
1− e−s

s
·

(
∞∑
k=0

e−sk(k + 1)2k −
∞∑
k=0

e−sk2k

)

=
1− e−s

s
·

(
∞∑
k=0

e−skH(k, 2)−
∞∑
k=0

(2e−s)k

)

=
1− e−s

s
·
(

1

(1− 2e−s)2
− 1

1− 2e−s

)
Now take the Laplace transform for both sides of the relation equation
and use our known formulas, we have:

Y (s)(e2s − 5es + 6) =
1− e−s

s
·
(

1

(1− 2e−s)2
− 1

1− 2e−s
+ es

)
Y (s) =

1− e−s

s
·(

3

1− 3e−s
− 5

2(1− 2e−s)
− 1

2(1− 2e−s)3

)
an = 3n+1 − 5

2
2n − 1

2
H(n, 3){r = 2}

an = 3n+1 − 5.2n−1 − 1

4
(n+ 1)(n+ 2)2n

an = 3n+1 − (n2 + 3n+ 12).2n−2
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We can easily check the result and see that this is a correct formula for
an. And now we have enough formulas to derive the following theorem
about particular solution.

Theorem 5.5. The particular solution of the second order linear recur-
sion relation an+2+ban+1+can = g(n)rn, in which g(n) is a polynomial
degree k of n, will be determined as followed:

1. If the constant r does not match any roots (either real or com-
plex) of the equation x2+bx+c = 0, then the particular solution
would be in form of:

an,p = g∗(n)rn

with g∗(n) is a polynomial degree k of n.
2. If the constant r matches one of the 2 separate roots of x2 +
bx+ c = 0, the particular solution would be in form of:

an,p = g∗(n)rn

with g∗(n) is a polynomial degree k + 1 of n.
3. If the constant r matches the double root of x2 + bx+ c = 0, the

particular solution would be in form of:

an,p = g∗(n)rn

with g∗(n) is a polynomial degree k + 2 of n.

Proof. Let’s look back at our formula (??) of H(n, p), and call the
product

∏p−1
k=1(n+ k) to be C(p). We have:

C(1) = 1

C(2) = n+ 1

C(3) = (n+ 1)(n+ 2)

C(4) = (n+ 1)(n+ 2)(n+ 3)

Note that C(p) is a polynomial degree p−1 of n. Next, we can express
g(n) in terms of C(i) with 1 ≤ i ≤ k + 1. That means:

g(n)rn =
k+1∑
j=1

cjH(n, j)

with cj are constants. Then we take the Laplace transform of g(n)rn,
we would have the form of:

L{g(n)rn} =
1− e−s

s
·
k+1∑
j=1

cj
(1− re−s)j
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Note that the constants cj in this case does need to be the same as
earlier equation. Therefore, our equation for particular solution will
be:

(5.4) Yp(s) =
1− e−s

s
·
k+1∑
j=1

cje
−2s

(1− re−s)j(1− r1e−s)(1− r2e−s)

with r1, r2 are 2 roots of the characteristic polynomial: x2 +bx+c = 0.
Note that we do not need to pay attention on how the fractions 1

1−r1e−s

and 1
1−r2e−s change because these 2 fractions (or one fraction 1

(1−r1e−s)2

in case of double root), will be combined into the homogeneous solution
formula. We will use h(r1, r2) to describe terms relating r1, r2. We just
need to pay attention on the power of 1 − re−s because these power
(the highest power, to be more specific) will determine the degree of
the polynomial g∗(n) after we take the Laplace inverse.

1. If r is different from both r1 and r2, after using partial fraction
for the right side of (??) we will have:

Yp(s) =
1− e−s

s
·

(
h(r1, r2) +

k+1∑
j=1

c∗j
(1− re−s)j

)

Note that we would have the same form for Yp(s) if r1 and r2 are
complex numbers. For more information about partial fraction,
see chapter 2.2 of [?]. Taking the Laplace inverse will give us
(note that the Laplace inverse of h(r1, r2) is combined into the
homogeneous solution):

an,p =
k+1∑
j=1

kjH(n, j)

Because H(n, k + 1) has the form of a product of rn and a
polynomial degree k of n, we have:

an,p = g∗(n)rn

with g∗(n) is a polynomial degree k of n.
2. If r equals one of the 2 separate roots (r, r1). Then (??) be-

comes:

Yp(s) =
1− e−s

s
·
k+1∑
j=1

cje
−2s

(1− re−s)j+1(1− r1e−s)
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Note the highest power has increased by 1. After using partial
fraction, we have:

Yp(s) =
1− e−s

s
·

(
A

1− r1e−s
+

k+2∑
j=1

c∗j
(1− re−s)j

)
Taking the Laplace inverse will give us:

an,p =
k+2∑
j=1

kjH(n, j)

Again, use the formula of H(n, p), we will have:

an,p = g∗(n)rn

with g∗(n) is a polynomial degree k + 1 of n.
3. If r equals the double root, meaning r = r1 = r2. From (??) we

have:

Yp(s) =
1− e−s

s
·
k+1∑
j=1

cje
−2s

(1− re−s)j+2

Using partial fraction will give us:

Yp(s) =
1− e−s

s
·
k+3∑
j=1

c∗j
(1− re−s)j

Note that in all 3 cases, the constants c∗j , kj are not the same.
Now take the Laplace inverse we will have:

an,p =
k+3∑
j=1

kjH(n, j)

Therefore:

an,p = g∗(n)rn

with g∗(n) is a polynomial degree k + 2 of n.

�

5.2.3. Example. Let’s look back to the Example ??:

an+2 − 5an+1 + 6an = n2n

Our characteristic polynomial x2−5x+6 has 2 roots (2,3). Our constant
r = 2 matches one of the roots. Therefore, our particular solution
would be in form of:

an,p = g∗(n)2n
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with g∗(n) is a polynomial degree 1 + 1 = 2 of n. Combine together we
would have the general solution:

an = c12
n + c23

n + (c3n
2 + c4n+ c5)2

n

We can see that this result agrees with the result we had in the example.

5.3. Forcing function involving sine and cosine. Our next goal is
to deal with forcing functions that involve trigonometric functions sine
and cosine.

5.3.1. Dealing with sine. Let’s look at a general relation:

an+2 + ban+1 + can = sin(kn)

First, let’s find the Laplace transform function of sin(kn). We will use
the following identity:

sin(ki+ k) + sin(ki− k) = 2 sin(ki) cos(k)

From (??), we have:

G(s) =
∞∑
i=1

e−si sin(ki)

2 cos(k)G(s) =
∞∑
i=1

e−si (2 sin(ki) cos(k))

=
∞∑
i=1

e−si (sin(ki+ k) + sin(ki− k))

=
∞∑
i=1

e−si sin (k(i+ 1)) +
∞∑
i=1

e−si sin (k(i− 1))

2 cos(k)G(s) =
1

e−s
·
(
G(s)− e−s sin(k)

)
+ e−sG(s)

G(s) =
sin(k)e−s

e−2s − 2 cos(k)e−s + 1

Therefore:

L{f(t) = sin(kn), n ≤ t < n+ 1} =
1− e−s

s
· sin(k)es

e2s − 2 cos(k)es + 1

Now starting from our relation equation, taking the Laplace trans-
form for both sides, we will have:

Y (s) = L(s) +
1− e−s

s
· sin(k)es

(es − α)(es − β)(es − u)(es − v)

Y (s) = L(s) +Q(s)
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with (α, β) = (cos(k) + i sin(k), cos(k) − i sin(k)), which are 2 roots
of x2 − 2 cos(k)x + 1 = 0, and u, v are 2 roots of x2 + bx + c = 0
(with x = es). The function L(s) corresponds to what we call the
homogenous solution, and the Q(s) is responsible for the particular
solution. Let’s calculate the Laplace inverse of Q(s):

Q(s) =
sin(k)es(1− e−s)

s
· 1

(es − α)(es − β)(es − u)(es − v)

=
sin(k)es(1− e−s)

s
·(

1
c1(es − α)

+
1

c2(es − β)
+

1
c3(es − u)

+
1

c4(es − v)

)

=
sin(k)(1− e−s)

s
·(

1
c1(1− αe−s)

+
1

c2(1− βe−s)
+

1
c3(1− ue−s)

+
1

c4(1− ve−s)

)

L−1{Q(s)} = sin(k) ·
(
αn

c1
+
βn

c2
+
un

c3
+
vn

c4

)
L−1{Q(s)} = o(αn, βn) + p(un, vn)

with:

c1 = (α− β)(α− u)(α− v)
c2 = (β − α)(β − u)(β − v)
c3 = (u− α)(u− β)(u− v)
c4 = (v − α)(v − β)(v − u)

Let’s examine the 2 terms of o(αn, βn). First of all, De Moivre’s
formula gives us:

αn = (cos(k) + i sin(k))n = cos(kn) + i sin(kn)

βn = (cos(k)− i sin(k))n = cos(kn)− i sin(kn)

Next, when we simplify the coefficients of αn, and βn (2 denominators),
we will see that they have similar forms: k1i+k2, and −k1i+k2. Using
these facts we will have:
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o(αn, βn) = sin(k) ·
(

cos(kn) + i sin(kn)

k1i+ k2

+
cos(kn)− i sin(kn)

−k1i+ k2

)
=

sin(k)

k2
1 + k2

2

· (2k1 sin(kn) + 2k2 cos(kn))

o(αn, βn) = k3 sin(kn) + k4 cos(kn)

Combine this with p(un, vn), which has the form of k5u
n + k6v

n. We
now know that our particular solution is in the form of: k3 sin(kn) +
k4 cos(kn)+k5u

n+k6v
n. Finally, combine this particular solution with

the homogenous solution, we will have our general solution:

an = c∗1u
n + c∗2v

n + c∗3 sin(kn) + c∗4 cos(kn)

Note that we have assumed that our characteristic polynomial function
has 2 separate complex roots (u, v). The case when it has 1 double root
is very similar. Instead of having 2 terms 1

1−ue−s and 1
1−ve−s , we would

have 2 terms in form of 1
(1−we−s)2

and 1
1−we−s , with w is the double root.

Therefore, using the formula for H(n, p) to take the Laplace inverse,
our final general solution would be in form of:

an = (c1n+ c2)w
n + c3 sin(kn) + c4 cos(kn)

Example. Let’s use our general solution formula to find the closed form
for the following sequence:

an+2 − 3an+1 + 2an = sin(n); a0 = 0, a1 = 1.

Our characteristic polynomial x2−3x+2 has two roots (2, 1). Therefore,
our general solution would be:

an = c12
n + c2 + c3 sin(n) + c4 cos(n)

From our relation equation, we could find a2 and a3. Then use these
results with our initial conditions a0 and a1, we could have a system
equation to solve for ci. In fact, we could find that:

c1 = 1− sin(1)

4 cos(1)− 5

c2 =
2 sin(2)− 5 sin(1)

(cos(1)− 1) · (8 cos(1)− 10)
− 1

c3 =
2 cos(1)− 1

8 cos(1)− 10

c4 =
sin(2)− 3 sin(1)

(cos(1)− 1) · (10− 8 cos(1))
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Using these notation to express our constants would make it so difficult
to check our formula. Instead, in order to check it, we could express
them as approximate values:

an = (1.296)2n − 1.915− 0.0142 sin(n) + 0.619 cos(n)

Now we could easily check our formula, and we can see that this is a
correct formula for {an}.

5.3.2. Dealing with cosine. The method is exactly the same. There’s
only a little difference in computing the Laplace transform. We use the
following formula for computing G(s):

cos(ki+ k) + cos(ki− k) = 2 cos(ki) cos(k)

Now do exactly what we did to find G(s) for sine, we will have:

G(s){f(n) = cos(kn)} =
1− cos(k)e−s

e−2s − 2 cos(k)e−s + 1

Therefore:

L{f(t) = cos(kn), n ≤ t < n+ 1} =
1− e−s

s
· 1− cos(k)e−s

e−2s − 2 cos(k)e−s + 1

Again, use the same method we used for sine, we will have our general
solution to be the same as of sine:

an = c1u
n + c2v

n + c3 sin(kn) + c4 cos(kn)

Using the results we had for sine and cosine with the Theorem ??
will give us the following theorem:

Theorem 5.6. The particular solution of a recursion relation of the
form:

an+2 + ban+1 + can = f(n)

with f(n) is a linear combination of sin(kn) and cos(kn), in which k
is a real constant, will have the form of:

an,p = A sin(kn) +B cos(kn)

with A, B are 2 real constants.

Proof. According to the Theorem, f(n) is a linear combination of sin(kn)
and cos(kn). This means:

f(n) = c1 sin(kn) + c2 cos(kn)

Let g(n) = c1 sin(kn), h(n) = c2 cos(kn). First, consider the following
property: if an,g is the particular solution for the recursion relation
an+2 + ban+1 + can = f(n), then the particular solution of the recursion
relation an+2 + ban+1 + can = pf(n), in which p is a real constant, will
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be pan,g. This property is true by linearity of the recursion relation.
Now use this property for g(n) and h(n), we will have their particular
solutions, respectively, to be: c1(c3 sin(kn)+c4 sin(kn)), c2(c5 sin(kn)+
c6 cos(kn)). Then use the Theorem ??, we will have:

an,p = A sin(kn) +B cos(kn)

with A and B are 2 real constants. �

5.4. Conclusion. With all the formulas and theorems we have had so
far, we now have enough tool to deal with any linear recursion relations
of order 2 with the forcing function of the form:

f(n) =
∑

gi(n)rni +
∑

pi sin(kin) +
∑

qi cos(cin)

with gi(n) are polynomials of n, and ri, pi, ki, qi, ci are constants.

Example. We could solve for the following relation using our known
formulas and theorems:

an+2 + ban+1 + can = (n+ 2)2n + (n2 + n+ 3)3n + 3 sin(2n) + cos(5n)

with b and c are 2 real constants.
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