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Chapter 1

Solutions

Section 10.1

1.

3 6 9−3−6−9

y

t

3

−3

3.

0 2 4−2−4

y

t

2

5.

1

� 2�−�−2�

3



4 1 Solutions

7.

1

1 2 3 4−1−2−3−4

y

t

9.

1

2

3

4

1 2 3 4−1−2−3−4

y

t

11. Periodic. Fundamental period is 2�/2 = �.

13. Since cos 2t is periodic with fundamental period 2�/2 = �, it follows that
all positive multiples k� is also a period. Similarly, sin 3t is periodic with
fundamental period 2�/3 so that all positive multiples 2m�/3 are also
periods. If p is any number that can be written both as k� and 2m�/3 for
appropriate k and m, then p is a period for the sum: cos 2(t+p)+sin3(t+
p) = cos(2t+2p)+ sin(3t+3(2m�/3)) = cos(2t+2k�)+ sin(3t+2m�) =
cos 2t + sin 3t. Therefore, the function is periodic with period p. The
smallest p that is both k� and 2m�/3 is p = 2� (k = 2, m = 3). Thus
the fundamental period is 2�

15. sin2 t = (1 − cos 2t)/2 so sin2 t is periodic with fundamental period
2�/2 = �

17. Periodic. The periods of sin t are 2k�, the periods of sin 2t are m�, and
the periods of sin 3t are 2n�/3 for positive integers k, m, n. The smallest
p that is common to all of these is p = 2�, so the fundamental period is
2�.

19. f(−t) = (−t) ∣−t∣ = −t ∣t∣ = −f(t) for all t. Thus, f(t) is odd.

21. This is the product of two even functions (cos t for both). Thus it is even
by Proposition 5 (1).

23. f(−t) = f(t) =⇒ (−t)2 + sin(−t) = t2 + sin t =⇒ t2 − sin t =
t2 + sin t =⇒ 2 sin t = 0 =⇒ t = k�. Thus f(t) is not even. Similarly,
f(t) is not odd.

25. f(−t) = ln ∣cos(−t)∣ = ln ∣cos t∣ = f(t). Thus, f(t) is even.

27. Use the identity cosA sinB = 1
2 (sin(A+B) + sin(B −A)) to get
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∫ L

−L

cos
n�

L
t sin

m�

L
t dt =

1

2

∫ L

−L

(

sin
(m+ n)�

L
t+ sin

(m− n)�

L
t
)

dt

=
1

2

(

−L

(m+ n)�
cos

(m+ n)�

L
t+

−L

(m− n)�
cos

(m− n)�

L
t

)
∣

∣

∣

∣

L

−L

= 0.

Section 10.2

1. The period is 10 so 2L = 10 and L = 5. Then

a0 =
1

5

∫ 5

−5

f(t) dt =
1

5

∫ 0

−5

0 dt+
1

5

∫ 5

0

3 dt =
1

5
⋅ 15 = 3.

For n ≥ 1,

an =
1

5

∫ 5

−5

f(t) cos
n�

5
t dt =

1

5

∫ 0

−5

f(t) cos
n�

5
t dt+

1

5

∫ 5

0

f(t) cos
n�

5
t dt

=
1

5

∫ 0

−5

(0) cos
n�

5
t dt+

1

5

∫ 5

0

3 cos
n�

5
t dt

=
1

5

[

15

n�
sin

n�

5
t

]5

0

= 0,

and

bn =
1

5

∫ 5

−5

f(t) sin
n�

5
t dt =

1

5

∫ 0

−5

f(t) sin
n�

5
t dt+

1

5

∫ 5

0

f(t) sin
n�

5
t dt

=
1

5

∫ 0

−5

(0) sin
n�

5
t dt+

1

5

∫ 5

0

3 sin
n�

5
t dt

=
1

5

[

−
15

n�
cos

n�

5
t

]5

0

= −
3

n�
(cosn� − 1) =

3

n�
(1− (−1)n)

=

{

0 if n is even
6
n� if n is odd.

Therefore, the Fourier series is
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f(t) ∼
3

2
+

6

�

(

sin
�

5
t+

1

3
sin

3�

5
t+

1

5
sin

5�

5
t+

1

7
sin

7�

5
t+ ⋅ ⋅ ⋅

)

.

=
3

2
+

6

�

∑

n=odd

1

n
sin

n�

5
t.

3. The period is 2� so L = �. Then

a0 =
1

�

∫ �

−�

f(t) dt =
1

�

∫ 0

−�

4 dt+
1

�

∫ �

0

−1 dt = 4− 1 = 3.

For n ≥ 1,

an =
1

�

∫ �

−�

f(t) cosnt dt =
1

�

∫ 0

−�

f(t) cosnt dt+
1

�

∫ �

0

f(t) cosnt dt

=
1

�

∫ 0

−�

4 cosnt dt+
1

�

∫ �

0

(−1) cosnt dt

=
1

�

[

4

n
sinnt

]0

−�

+
1

�

[

−1

n
sinnt

]�

0

= 0,

and

bn =
1

�

∫ �

−�

f(t) sinnt dt =
1

�

∫ 0

−�

f(t) sinnt dt+
1

�

∫ �

0

f(t) sinnt dt

=
1

�

∫ 0

−�

4 sinnt dt+
1

�

∫ �

0

(−1) sinnt dt

=
1

�

[

−
4

n
cosnt

]0

−�

+
1

�

[

−
−1

n
cosnt

]�

0

=
−4

n�
(1 − cos(−n�)) +

1

n�
(cos(n�)− 1)

= −
5

n�
(1− cosn�) = −

5

n�
(1− (−1)n).

Therefore,

bn =

{

0 if n is even,

− 10
n� if n is odd,

and the Fourier series is

f(t) ∼
3

2
−

10

�

(

sinnt+
1

3
sinnt+

1

5
sinnt+

1

7
sinnt+ ⋅ ⋅ ⋅

)

=
3

2
−

10

�

∑

n=odd

1

n
sinnt.
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5. The period is 2� so L = �. The function f(t) is odd, so the cosine terms
an are all 0. Now compute the coefficients bn:

bn =
1

�

∫ �

−�

f(t) sinnt dt

=
2

�

∫ �

0

t sinnt dt

(

let x = nt so t =
1

n
x and dt =

1

n
dx

)

=
2

�

∫ n�

0

1

n
x sin x

1

n
dx =

2

n2�

∫ n�

0

x sinx dx

=
2

n2�
[sinx− x cosx]

x=n�
x=0

= −
2

n2�
(n� cosn�) = −

2

n
(−1)n.

Therefore, the Fourier series is

f(t) ∼ 2

(

sin t−
1

2
sin 2t+

1

3
sin 3t−

1

4
sin 4t+ ⋅ ⋅ ⋅

)

= 2
∞
∑

n=1

(−1)n+1

n
sinnt.

7. The period is 4 so L = 2. The function is even, so the sine terms bn = 0.
For the cosine terms an:

a0 =
1

2

∫ 2

−2

f(t) dt =
1

2
2

∫ 2

0

f(t) dt =

∫ 2

0

t2 dt =
t3

3

∣

∣

∣

∣

2

0

=
8

3
,

and for n ≥ 1, (integration by parts is used multiple times)

an =
1

2

∫ 2

−2

f(t) cos
n�

2
t dt =

∫ 2

0

f(t) cos
n�

2
t dt =

∫ 2

0

t2 cos
n�

2
t dt

= t2 ⋅
2

n�
sin

n�

2
t

∣

∣

∣

∣

2

0

−

∫ 2

0

4t

n�
sin

n�

2
t dt = −

4

n�

∫ 2

0

t sin
n�

2
t dt

= −
4

n�

[

−2t

n�
cos

n�

2
t

∣

∣

∣

∣

2

0

+
2

n�

∫ 2

0

cos
n�

2
t dt

]

=
16

n2�2
cosn� −

16

n3�3
sin

n�

2
t

∣

∣

∣

∣

2

0

=
16

n2�2
(−1)n.

Therefore, the Fourier series is
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f(t) ∼
4

3
+

16

�2

∞
∑

n=1

(−1)n

n2
cos

n�

2
t.

9. The period is � so L = �/2 and n�/L = 2n. The function is even, so the
sine terms bn = 0. For the cosine terms an:

a0 =
2

�

∫ �

0

f(t) dt =
2

�

∫ �

0

sin t dt = −
2

�
cos t

∣

∣

∣

∣

�

0

=
4

�
,

and for n ≥ 1,

an =
2

�

∫ �

0

f(t) cos 2nt dt =
2

�

∫ �

0

sin t cos 2nt dt

=
2

�

∫ �

0

1

2
(sin(2n+ 1)t− sin(2n− 1)t) dt

=
1

�

[

−1

2n+ 1
cos(2n+ 1)t+

1

2n− 1
cos(2n− 1)t

]�

0

=
1

�

[

−1

2n+ 1
(cos(2n+ 1)� − 1) +

1

2n− 1
(cos(2n− 1)� − 1)

]

=
−2

�

[

1

2n− 1
−

1

2n+ 1

]

=
−4

(4n2 − 1)�
.

Therefore, the Fourier series is

f(t) ∼
2

�
−

4

�

∞
∑

n=1

cos 2nt

4n2 − 1
.

11. The period is 2 so L = 1. Since the function f(t) is even, the sine
coefficients bn = 0. Now compute the coefficients an: For n = 0, using
the fact that f(t) is even,

a0 =

∫ 1

−1

f(t) dt = 2

∫ 1

0

f(t) dt

= 2

∫ 1

0

(1− t) dt = 2

[

t−
t2

2

]1

0

= 1.

For n ≥ 1, using the fact that f(t) is even,
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an =

∫ 1

−1

f(t) cosn�t dt = 2

∫ 1

0

f(t) cosn�t dt

= 2

∫ 1

0

(1− t) cosn�t dt (integration by parts with u = 1− t, dv = cosn�t dt)

= 2

[

1− t

n�
sinn�t

]1

0

+
2

n�

∫ 1

0

sinn�t dt

= −
2

n2�2
cosn�t

∣

∣

∣

∣

1

0

= −
2

n2�2
[cosn� − 1] = −

2

n2�2
[(−1)n − 1]

Therefore,

an =

{

0 if n is even,
4

n2�2 if n is odd

and the Fourier series is

f(t) ∼
1

2
+

4

�2

(

cos�t

12
+

cos 3�t

32
+

cos 5�t

52
+

cos 7�t

72
+ ⋅ ⋅ ⋅

)

=
1

2
+

4

�2

∞
∑

n=odd

cosn�t

n2
.

13. The period is 2� so L = �. The function f(t) is an odd function, so the
cosine terms an = 0. Now compute the coefficients bn: Since f(t) is odd,
f(t) sinnt is even so, (using integration by parts multiple times)

bn =
1

�

∫ �

−�

f(t) sinnt dt =
2

�

∫ �

0

f(t) sinnt dt

=
2

�

∫ �

0

t(� − t) sinnt dt

=
2

�

−t(� − t)

n
cosnt

∣

∣

∣

∣

�

0

+
2

n�

∫ �

0

(� − 2t) cosnt dt

=
2(� − 2t)

n2�
sinnt

∣

∣

∣

∣

�

0

+
4

n2�

∫ �

0

sinnt dt

= −
4

n3�
cosnt

∣

∣

∣

∣

�

0

= −
4

n3�
(cosn� − 1)

= −
4

n3�
((−1)n − 1) =

{

0 if n is even
8

n3� if n is odd.
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Therefore the Fourier series is

f(t) ∼
8

�

∑

n=odd

sinnt

n3
.

15. The function is odd of period 2� so the cosine terms an = 0. Let n ≥ 1.
Then,

bn =
1

�

∫ �

−�

f(t) sinnt dt =
2

�

∫ �

0

f(t) sinnt dt

=
2

�

∫ �

0

sin
t

2
sinnt dt

=
1

�

∫ �

0

(cos(
1

2
− n)t− cos(

1

2
+ n)t) dt

=
1

�

[

sin(12 − n)t
1
2 − n

−
sin(12 + n)t

1
2 + n

]�

0

=
1

�

[

sin(12 − n)�
1
2 − n

−
sin(12 + n)�

1
2 + n

]

=
1

�

[

sin �
2 cosn�
1
2 − n

−
sin �

2 cosn�
1
2 + n

]

=
(−1)n

�

[

1
1
2 − n

−
1

1
2 + n

]

=
(−1)n

�

[

(12 + n)− (12 − n)
1
4 − n2

]

=
2n(−1)n+1

�(n2 − 1
4 )

.

Therefore, the Fourier series is

f(t) ∼
2

�

∞
∑

n=1

(−1)n+1n

n2 − 1
4

sinnt.

17. The period is 2 so L = 1.

a0 =

∫ 1

−1

et dt = e1 − e−1 = 2 sinh 1.

For n ≥ 1, the following integration formulas (with a = 1, b = n�) will
be useful.



1 Solutions 11

∫

eat cos(bt) dt =
1

a2 + b2
eat[a cos(bt) + b sin(bt)] + C

∫

eat sin(bt) dt =
1

a2 + b2
eat[a sin(bt)− b cos(bt)] + C

Then,

an =

∫ 1

−1

et cosn�t dt

=
1

1 + n2�2
et[cosn�t+ n� sinn�t]

∣

∣

∣

∣

1

−1

=
1

1 + n2�2
[e1 cosn� − e−1 cos(−n�)]

=
(e1 − e−1)(−1)n

1 + n2�2
=

2(−1)n sinh(1)

1 + n2�2
,

and,

bn =

∫ 1

−1

et sinn�t dt

=
1

1 + n2�2
et[sinn�t− n� cosn�t]

∣

∣

∣

∣

1

−1

=
1

1 + n2�2
[e1(−n� cosn�)− e−1(−n� cos(−n�))]

=
(e1 − e−1)(−n�)(−1)n

1 + n2�2
=

2(−1)n(−n�) sinh(1)

1 + n2�2
.

Therefore, the Fourier series is

f(t) ∼ sinh(1) + 2 sinh(1)

∞
∑

n=1

(−1)n(cosn�t− n� sinn�t)

1 + n2�2
.
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Section 10.3

1. (a)

2 4 6 8−2−4

y

t

3

−1

(b) All t except for t = 2n for n an integer.
(c) For t = 2n, f(t) = 3 for n even and f(t) = −1 for n odd. Converges

to (3 + (−1))/2 = 1 for all t = 2n.

3. (a)

1

2

1 2 3 4−1−2

y

t

(b) All t except for t = n for n an even integer.
(c) For t an even integer, f(t) = 0. Fourier series converges to 1.

5. (a)

2

4

2 4 6−2−4−6

y

t

(b) All t since f(t) is continuous for all t.
(c) No points of discontinuity.

7. (a)

1

2

1 2 3 4 5 6−1−2−3−4−5−6

y

t

(b) All t except for t = 4n for n an integer.
(c) For t a multiple of 4, f(t) = 0. Fourier series converges to 1.
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9. (a)
1

1 2−1

(b) All t since f(t) is continuous.
(c) No points of discontinuity.

11. The Fourier series for the 2L-periodic function f(t) = t for −L ≤ t < L
is

f(t) ∼
2L

�

(

sin
�

L
t−

1

2
sin

2�

L
t+

1

3
sin

3�

L
t−

1

4
sin

4�

L
t+ ⋅ ⋅ ⋅

)

This function is continuous for −L < t < L so the Fourier series converges
to f(t) for −L < t < L. Letting L = � gives an equality

t = 2

(

sin t−
1

2
sin 2t+

1

3
sin 3t−

1

4
sin 4t+ ⋅ ⋅ ⋅

)

, for −� < t < �.

Dividing by 2 gives the required identity. Substituting t = �/2 gives the
summation.

13. The 2-periodic function defined by f(t) = t2 for −1 ≤ t ≤ 1 has period
2 so L = 1. Compute the Fourier series of f(t). The function is even, so
the sine terms bn = 0. For the cosine terms an:

a0 =

∫ 1

−1

f(t) dt = 2

∫ 1

0

f(t) dt = 2

∫ 1

0

t2 dt = 2
t3

3

∣

∣

∣

∣

1

0

=
2

3
,

and for n ≥ 1, (integration by parts is used multiple times)

an =

∫ 1

−1

f(t) cosn�t dt = 2

∫ 1

0

f(t) cosn�t dt = 2

∫ 1

0

t2 cosn�t dt

= 2 t2 ⋅
1

n�
sinn�t

∣

∣

∣

∣

1

0

− 2

∫ 1

0

2t

n�
sinn�t dt = −

4

n�

∫ 1

0

t sinn�t dt

= −
4

n�

[

−t

n�
cosn�t

∣

∣

∣

∣

1

0

+
1

n�

∫ 1

0

cosn�t dt

]

=
4

n2�2
cosn� −

4

n3�3
sinn�t

∣

∣

∣

∣

1

0

=
4

n2�2
(−1)n.



14 1 Solutions

Therefore, the Fourier series is

f(t) ∼
1

3
+

4

�2

∞
∑

n=1

(−1)n

n2
cosn�t.

Since the function f(t) is continuous for all t, the Fourier series converges
to f(t) for all t. In particular,

1

3
+

4

�2

∞
∑

n=1

(−1)n

n2
cosn�t = t2, for −1 ≤ t ≤ 1.

15. f(t) is 2� periodic and even. Thus the sine terms bn = 0. For the cosine
terms.

a0 =
1

�

∫ �

−�

t4 dt =
2

�

∫ �

0

t4 dt =
2

5
�4.

For n ≥ 1: The following integration formula, obtained by multiple inte-
grations by parts, will be useful:

∫

t4 cos at dt =
1

a
t4 sin at−

1

a2
4t3 cos at−

1

a3
12t2 sinat

−
1

a4
24t cosat+

1

a5
24 sinat.

Then, since t4 is even, and letting a = n in the integration formula,

an =
1

�

∫ �

−�

t4 cosnt dt =
2

�

∫ �

0

t4 cosnt dt

=
2

�

[

1

n
t4 sinnt+

4

n2
t3 cosnt−

12

n3
t2 sinnt−

24

n4
t cosnt+

24

n5
sinnt

]�

0

=
2

�

[

4

n2
�3 cosn� −

24

n4
� cosn�

]

=
8

n2
�2(−1)n −

48

n4
(−1)n.

Thus, the Fourier series is

f(t) ∼
1

5
�4 +

∞
∑

n=1

[ 8

n2
�2(−1)n −

48

n4
(−1)n

]

cosnt.

Since f(t) is continuous for all t, the Fourier series of f(t) converges to
f(t) for all t. In particular, there is an identity

t4 =
1

5
�4 +

∞
∑

n=1

[ 8

n2
�2(−1)n −

48

n4
(−1)n

]

cosnt,
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valid for all t. Setting t = � gives

�4 =
1

5
�4 +

∞
∑

n=1

8

n2
�2 −

∞
∑

n=1

48

n4
.

Thus,

48

∞
∑

n=1

1

n4
= −

4

5
�4 + 8�2

∞
∑

n=1

1

n2

= −
4

5
�4 + 8�2 ⋅

�2

6
from problem 13

= �4
(4

3
−

4

5

)

= �4
( 8

15

)

.

Hence,
∞
∑

n=1

1

n4
= �4 8

15 ⋅ 48
=

�4

90
.

Setting t = 0 gives

0 =
1

5
�4 +

∞
∑

n=1

8

n2
�2(−1)n −

∞
∑

n=1

48

n4
(−1)n.

Thus,

48

∞
∑

n=1

(−1)n

n4
=

�4

5
+ 8�2

∞
∑

n=1

(−1)n

n2

=
�4

5
− 8�2 ⋅

�2

12
from problem 13

=
�4

5
−

8�4

12
= �4

(1

5
−

2

3

)

= −
7

15
�4.

Therefore,
∞
∑

n=1

(−1)n+1

n4
=

7�4

15 ⋅ 48
=

7�4

720
.

Section 10.4

1. Cosine series:

a0 =
2

L

∫ L

0

f(t) dt =
2

L

∫ L

0

1 dt = 2,
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and for n ≥ 1

an =
2

L

∫ L

0

f(t) cos
n�t

L
dt

=
2

L

∫ L

0

cos
n�t

L
dt =

2

n�
sin

n�t

L

∣

∣

∣

∣

L

0

= 0.

Thus, the Fourier cosine series is f(t) ∼ 1 and this series converges to the
constant function 1.
Sine series: For n ≥ 1

bn =
2

L

∫ L

0

f(t) sin
n�t

L
dt

=
2

L

∫ L

0

sin
n�t

L
dt = −

2

n�
cos

n�t

L

∣

∣

∣

∣

L

0

= −
2

n�
(cosn� − 1) =

{

0 if n is even
4
n� if n is odd.

Thus, the Fourier sine series is

f(t) ∼
4

�

∑

nodd

1

n
sin

n�t

L
.

This converges to the odd extension of f(t), which is the odd square wave
function (see Figure 10.5). The graph is

y

t

1

−1
L 2L 3L−L−2L−3L

b b b b b b b

3. Cosine series: For n = 0,

a0 =
2

2

∫ 2

0

f(t) dt

=

∫ 2

0

t dt =
t2

2

∣

∣

∣

∣

2

0

= 2.

For n ≥ 1, taking advantage of the integration by parts formula
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∫

x cosx dx = x sinx+ cosx+ C,

an =
2

2

∫ 2

0

f(t) cos
n�

2
t dt

=

∫ 2

0

t cos
n�

2
t dt

(

let x =
n�

2
t so t =

2x

n�
and dt =

2dx

n�

)

=

∫ n�

0

2x

n�
cosx

2dx

n�
=

4

n2�2
[x sinx+ cosx]x=n�

x=0

=
4

n2�2
[cosn� − 1] =

2

n2�2
[(−1)n − 1]

Therefore,

an =

{

0 if n is even,

− 8
n2�2 if n is odd

and the Fourier cosine series is

f(t) ∼ 1−
8

�2

(

cos �
2 t

12
+

cos 3�
2 t

32
+

cos 5�
2 t

52
+

cos 7�
2 t

72
+ ⋅ ⋅ ⋅

)

= 1−
8

�2

∑

n=odd

cos n�
2 t

n2
.

This converges to the even extension of f(t), which is an even triangular
wave with graph

2

0 2 4 6−2−4−6

y

t

Sine series: For n ≥ 1, taking advantage of the integration by parts
formula

∫

x sinx dx = −x cosx+ sinx+ C,
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bn =
2

2

∫ 2

0

f(t) sin
n�

2
t dt

=

∫ 2

0

t sin
n�

2
t dt

(

let x =
n�

2
t so t =

2x

n�
and dt =

2dx

n�

)

=

∫ n�

0

2x

n�
sinx

2dx

n�
=

4

n2�2
[−x cosx+ sinx]

x=n�
x=0

= −
4

n�
cosn� = −

4

n�
(−1)n

Therefore, the Fourier sine series is

f(t) ∼
4

�

(

sin �
2 t

1
−

sin 2�
2 t

2
+

sin 3�
2 t

3
−

sin 4�
2 t

4
+ ⋅ ⋅ ⋅

)

=
4

�

∞
∑

n=1

(−1)n+1 sin
n�
2 t

n
.

This converges to the odd extension of f(t), which is a sawtooth wave
with graph

2

−2

2 4 6−2−4−6

y

tb b b b

5. Cosine series: For n = 0:

a0 =
2

�

∫ �

0

f(t) dt =
2

�

∫ �/2

0

dt = 1,

and for n ≥ 1,

an =
2

�

∫ �

0

f(t) cosnt dt =
2

�

∫ �/2

0

cosnt dt

=
2

n�
sinnt

∣

∣

∣

∣

�/2

0

=
2

n�
sin

n�

2
.

Thus, the Fourier cosine series is

f(t) ∼
1

2
+

2

�

∞
∑

n=1

sin n�
2

n
cosnt =

1

2
+

2

�

∞
∑

k=1

(−1)k

2k + 1
cos(2k + 1)t.
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This converges to the even extension of f(t), which has the graph

�
2 � 3�

2 2�−�
2−�−3�

2−2�

Sine series: For n ≥ 1,

bn =
2

�

∫ �

0

f(t) sinnt dt =
2

�

∫ �/2

0

sinnt dt

=
−2

n�
cosnt

∣

∣

∣

∣

�/2

0

=
−2

n�
(cos

n�

2
− 1).

Thus, the Fourier sine series is

f(t) ∼
2

�

∞
∑

n=1

−2

n�
(cos

n�

2
− 1) sinnt.

This converges to the odd extension of f(t), which has the graph

�
2 � 3�

2 2�−�
2−�−3�

2−2�

7. Cosine series: For n = 0,

a0 =
2

1

∫ 1

0

f(t) dt = 2

∫ 1

0

(t− t2) dt = 2

[

t2

2
−

t2

3

]1

0

=
1

3
.

For n ≥ 1, taking advantage of the formula (obtained from repeated
integration by parts):

∫

p(t) cos at dt =
1

a
p(t) sin at−

1

a

∫

p′(t) sin at dt

=
1

a
p(t) sin at+

1

a2
p′(t) cos at−

1

a3
p′′(t) sin at− ⋅ ⋅ ⋅

(+ +−−++−− ⋅ ⋅ ⋅ )(signs alternate in pairs),
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an = 2

∫ 1

0

f(t) cosn�t dt = 2

∫ 1

0

(t− t2) cosn�t dt

= 2

[

1

n�
(t− t2) sinn�t+

1

n2�2
(1− 2t) cosn�t−

1

n3�3
(−2) sinn�t

]1

0

= 2

[

−1

n2�2
−

1

n2�2

]

=
−2

n2�2
(cosn� + 1)

=

{

0 if n is odd
−4

n2�2 if n is even

Therefore, the Fourier cosine series is

f(t) ∼
1

6
−

4

�2

∑

n=even

cosn�t

n2
.

This converges to the even extension of f(t), which has the graph

1 2 3−1−2−3

y

t

Sine series: For n ≥ 1, taking advantage of the formula (obtained from
repeated integration by parts):

∫

p(t) sin at dt = −
1

a
p(t) cos at+

1

a

∫

p′(t) cos at dt

= −
1

a
p(t) cos at+

1

a2
p′(t) sin at+

1

a3
p′′(t) cos at− ⋅ ⋅ ⋅

(−++−−++ ⋅ ⋅ ⋅ )(signs alternate in pairs after first term),

bn = 2

∫ 1

0

f(t) sinn�t dt = 2

∫ 1

0

(t− t2) sinn�t dt

= 2

[

−
1

n�
(t− t2) cosn�t+

1

n2�2
(1− 2t) sinn�t+

1

n3�3
(−2) cosn�t

]1

0

=
−4

n3�3
(cosn� − 1)

=

{

0 if n is even
8

n3�3 if n is odd

Therefore, the Fourier sine series is
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f(t) ∼
8

�3

∑

n=odd

sinn�t

n3
.

This converges to the odd extension of f(t), which has the graph

1 2 3−1−2−3

y

t

9. Cosine series: The even extension of the function f(t) = cos t on 0 <
t < � is just the cosine function on the whole real line. Thus, f(t) it
its own Fourier cosine series f(t) ∼ cos t, which converges to the cosine
function.
Sine series: For n ≥ 1,

bn =
2

�

∫ �

0

f(t) sinnt dt =
2

�

∫ �

0

cos t sinnt dt

=
−2

�

[

1

n2 − 1
(sin t sinnt+ n cos t cosnt)

]�

0

=
−2n

�(n2 − 1)
(cos� cosn� − 1)

=

{

4n
�(n2−1) if n is even

0 if n is odd

Therefore, the Fourier sine series is

f(t) ∼
2

�
+

4

�

∑

n=even

n

n2 − 1
sinnt.

This converges to the odd extension of f(t), which has the graph

1

−1

� 2� 3�−�−2�−3�

b b b b b b b

11. Cosine series: For n = 0,
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a0 =
2

L

∫ L

0

f(t) dt =
2

L

∫ L

0

(

1−
2

L
t
)

dt =
2

L

(

t−
t2

L

)

∣

∣

∣

∣

L

0

= 0.

For n ≥ 1,

an =
2

L

∫ L

0

f(t) cos
n�

L
t dt =

2

L

∫ L

0

(

1−
2

L
t
)

cos
n�

L
t dt

=
2

L

[

L

n�

(

1−
2

L
t
)

sin
n�

L
t+

L2

n2�2

(

−
2

L

)

cos
n�

L
t

]L

0

= −
4

n2�2
(cosn� − 1) =

{

8
n2�2 if n is odd

0 if n is even

Therefore, the Fourier cosine series is

f(t) ∼
−4

�2

∑

n=odd

cos n�
L t

n2
.

This converges to the even extension of f(t), which has the graph

y

t
L 2L 3L−L−2L−3L

Sine series: For n ≥ 1,

bn =
2

L

∫ L

0

f(t) sin
n�

L
t dt =

2

L

∫ L

0

(

1−
2

L
t
)

sin
n�

L
t dt

=
2

L

[

−L

n�

(

1−
2

L
t
)

cos
n�

L
t+

L2

n2�2

(

−
2

L

)

sin
n�

L
t

]L

0

=
2

n�
cosn� −

−2

n�
=

2

n�
((−1)n + 1)

=

{

4
n� if n is even

0 if n is odd

Therefore, the Fourier sine series is

f(t) ∼
4

�

∑

n=even

sin n�
L t

n
.

This converges to the odd extension of f(t), which has the graph
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b b b b b b b

y

t
L 2L 3L−L−2L−3L

Section 10.5

1. The procedure is to write each of these functions as a linear combination
of f1(t) and f2(t) (or other basic functions whose Fourier series are already
computed) and then use Theorem 1.

(a) f3(t) = 1− f1(t). Thus,

f3(t) = 1− f1(t) ∼
1

2
−

2

�

∑

n=odd

sinnt

n
.

(b) From Example 5 of Section 10.2, the Fourier series of the 2�-periodic
sawtooth wave function f(t) = t for −� < t < �, is

f(t) ∼ 2
∞
∑

n=1

(−1)n+1

n
sinnt.

Since, f4(t) = f(t)− f2(t),

f4(t) ∼ 2

∞
∑

n=1

(−1)n+1

n
sinnt−

(

�

4
−

2

�

∑

n=odd

cosnt

n2
+

∞
∑

n=1

(−1)n+1 sinnt

n

)

= −
�

4
+

2

�

∑

n=odd

cosnt

n2
+

∞
∑

n=1

(−1)n+1 sinnt

n
.

(c) f5(t) = f3(t) + f2(t). Thus,

f5(t) ∼
1

2
−

2

�

∑

n=odd

sinnt

n
+

�

4
−

2

�

∑

n=odd

cosnt

n2
+

∞
∑

n=1

(−1)n+1 sinnt

n

=
�

4
+

1

2
−

2

�

∑

n=odd

cosnt

n2
+
∑

n=odd

−2 + �

�

sinnt

n
−

∑

n=even

sinnt

n

(d) f6(t) = 2f3(t). Thus,
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f6(t) ∼ 2

(

1

2
−

2

�

∑

n=odd

sinnt

n

)

= 1−
4

�

∑

n=odd

sinnt

n

(e) f7(t) = 2f3(t) + 3f1(t) = 2(1− f1(t)) + 3f1(t) = 2 + f1(t). Thus,

f7(t) = 2 + f1(t) ∼
5

2
+

2

�

∑

n=odd

sinnt

n
.

(f) f8(t) = 1 + 2f2(t). Thus,

f8(t) ∼ 1 +
�

2
−

4

�

∑

n=odd

cosnt

n2
+ 2

∞
∑

n=1

(−1)n+1 sinnt

n
.

(g)

f9(t) = af3(t) + bf4(t) + cf1(t) + df2(t)

= a(1− f1(t)) + b(t− f2(t)) + cf1(t) + df2(t)

= a+ bt+ (c− a)f1(t) + (d− b)f2(t).

Thus,

f9(t) ∼ a+ b

(

2

∞
∑

n=1

(−1)n+1

n
sinnt

)

+ c

(

1

2
+

2

�

∑

n=odd

sinnt

n

)

+ d

(

�

4
−

2

�

∑

n=odd

cosnt

n2
+

∞
∑

n=1

(−1)n+1 sinnt

n

)

= a+
c

2
+

�d

4
−

2d

�

∑

n=odd

cosnt

n2
−

∑

n=even

(2b+ d)
sinnt

n

+

(

2c

�
+ 2b+ d

)

∑

n=odd

sinnt

n
.

3. The function g(t) = ∣t∣ − �
2 for −� < t < � has the cosine term a0 = 0

in its Fourier series, so the Fourier series of
∫ t

−� g(x) dx can be computed
by termwise integration of the Fourier series of g(t). For −� < t ≤ 0,

∫ t

−�

g(x) dx =

∫ t

−�

(

∣x∣ −
�

2

)

dx =

∫ t

−�

(

− x−
�

2

)

dx

=

[

−
x2

2
−

�

2
x

]t

−�

= −
t2

2
−

�

2
t.

For 0 < t < �,
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∫ t

−�

g(x) dx =

∫ 0

�

g(x) dx +

∫ t

0

g(x) dx = 0 +

∫ t

0

(

∣x∣ −
�

2

)

dx

=

∫ t

0

(

x−
�

2

)

dx =

[

x2

2
−

�

2
x

]t

0

=
t2

2
−

�

2
t.

Thus,
∫ t

−�

g(x) dx =
1

2
t2 sgn t−

�

2
t.

Theorem 7 applies to give

∫ t

−�

g(x) dx ∼
A0

2
−

4

�

∑

n=odd

1

n3
sinnt.

Since
∫ t

−� g(x) dx is an odd function, the cosine term A0 = 0. Solving for
f(t) gives

f(t) = 2

∫ t

−�

g(x) dx + �t.

Thus, using the known Fourier series for t given in Exercise 2, the Fourier
series of f(t) is given by

f(t) ∼ −
8

�

∑

n=odd

1

n3
sinnt+ 2�

∞
∑

n=1

(−1)n+1

n
sinnt

=
∑

n=odd

(

−8

�n3
+

2�

n

)

sinnt−
∑

n=even

1

n
sinnt.

5. (a) f(t) is continuous for −2 < t < 0 and for 0 < t < 2 since it is de-
fined by a polynomial on each of those open intervals. limt→0+ f(t) =

limt→0+
t2

2 − t
2 = 0 and limt→0− f(t) = limt→0− −t/2 = 0. Thus, f(t)

is continuous at 0. Since limt→2− f(t) = limt→2−
t2

2 − t
2 = 4

2 − 2
2 = 1

and limt→2+ f(t) = limt→−2+ f(t) = limt→−2+ −t/2 = 1, it follows
that f(t) is continuous at 2, and similarly at -2. Since f(t) is 4-
periodic, it is thus continuous everywhere.

f ′(t) =

{

− 1
2 if −2 < t < 0

t− 1
2 if 0 < t < 2

and f ′′(t) =

{

0 if −2 < t < 0

1 if 0 < t < 2
Thus,

both f ′(t) and f ′′(t) are piecewise continuous,and hence f(t) is piece-
wise smooth. Therefore, the hypotheses of Theorem 3 are satisfied.

(b) Using Theorem 3 we can differentiate the Fourier series of f(t) term
by term to get

f ′(t) ∼
2

�

∞
∑

n=1

(

−
(−1)n

n
sin

n�

2
t+

(−1)n − 1

�n2
cos

n�

2
t

)

.
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(c) Since limt→2− f ′(t) = limt→2− t− 1
2 = 1− 1

2 = 1
2 and limt→2+ f ′(t) =

limt→−2+ f ′(t) = limt→−2+ − 1
2 = − 1

2 , it follows that f ′(t) is not
continuous at 2, and similarly at -2. Thus, the hypotheses of Theorem
3 are not satisfied.

Section 10.6

1. If g(t) is the 2-periodic square wave function defined on −1 < t < 1 by

g(t) =

{

−1 if −1 < t < 0

1 if 0 < t < 1
then f(t) = 1

2 + 1
2g(t). Thus, the Fourier

series of f(t) is

f(t) =
1

2
+

2

�

∑

n=odd

sinn�t

n
.

Let y(t) = A0

2 +
∑

∞

n=1(An cosn�t +Bn sinn�t) be a 2-periodic solution
of y′′+4y = f(t) expressed as the sum of its Fourier series. Then y(t) will
satisfy the hypotheses of Theorem 3 of Section 10.5. Thus, differentiating
twice will give

y′′(t) =
∞
∑

n=1

(−n2�2An cosn�t− n2�2Bn sinn�t).

Substituting into the differential equation gives

y′′(t) + 4y(t) = 2A0 +

∞
∑

n=1

(An(4− n2�2) cosn�t+Bn(4− n2�2) sinn�t)

=
1

2
+

2

�

∑

n=odd

sinn�t

n
.

Comparing corresponding coefficients of cosn�t and sinn�t gives the
equations

2A0 =
1

2

An(4− n2�2) = 0 for all n ≥ 1

Bn(4− n2�2) =

{

0 if n is even
2
n� if n is odd

Solving these equations gives A0 = 1/4, An = 0 for all n, Bn = 0 for n
even, and for n odd,

Bn =
2

(4− n2�2)n�
.
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Thus, the unique 2-periodic solution is the sum of the Fourier series ex-
pansion

y(t) =
1

8
+

2

�

∑

n=odd

1

n(4− n2�2)
sinn�t.

3. The characteristic polynomial q(s) = s2 + 1 has a root i = in! for
n = 1, so Theorem 2 does not apply. However, writing

∑

∞

n=1 n
−2 cosnt =

cos t+
∑

∞

n=2 n
−2 cosnt and solving the two equations y′′ + y = cos t and

y′′ + y = f(t) separately, the original equation can be solved by linearity.
Start with y′′+y = cos t. This can be solved by undetermined coefficients.
Since q(s) = n2 + 1 and ℒ{cos t} = s2 + 1, a test function has the form
y(t) = At cos t+Bt sin t. Then y′(t) = A cos t−At sin t+B sin t+Bt cos t,
and y′′(t) = −2A sin t − At cos t + 2B cos t − Bt sin t. Substituting into
y′′ + y = cos t gives

−2A sin t+ 2B cos t = cos t.

Equating coefficients of sin t and cos t gives A = 0 and B = 1/2. Thus,
a particular solution of y′′ + y = cos t is y1(t) = 1

2 t sin t. Now find a
particular solution of y′′ + y = f(t) by looking for a periodic solution
y2(t) =

∑

∞

n=2(An cosnt+Bn sinnt). Substitute into the differential equa-
tion to get

y′′2 + y2 =
∞
∑

n=2

(An(1− n2) cosnt+Bn(1− n2) sinnt) =
∞
∑

n=2

1

n2
cosnt.

Comparing coefficients of cosnt and sinnt gives Bn = 0 and An =
1

n2(1−n2) , so that a particular solution of y′′ + y = f(t) is

y2(t) =
∞
∑

n=2

1

n2(1− n2)
cosnt.

By linearity, a particular solution of the original equation is

yp(t) =
1

2
t sin t+

∞
∑

n=2

1

n2(1− n2)
cosnt,

and the general solution is

yg(t) = yℎ(t)+yp(t) = C1 cos t+C2 sin t+
1

2
t sin t+

∞
∑

n=2

1

n2(1− n2)
cosnt.

5. f(t) is the even extension of the function defined on the interval (0, 2) by
f(t) = 5 if 0 < t < 1 and f(t) = 0 if 1 < t < 2. Thus the Fourier series is
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a cosine series with

a0 =
2

2

∫ 2

0

f(t) dt =

∫ 1

0

5 dt = 5,

and for n ≥ 1

an =
2

2

∫ 2

0

f(t) cos
n�t

2
dt =

∫ 1

0

cos
n�t

2
dt

=
2

n�
sin

n�t

2

∣

∣

∣

∣

1

0

=
2

n�
sin

n�

2
.

Hence,

an =

{

0 if n = 2k for k ≥ 1,

(−1)k if n = 2k + 1 for k ≥ 0.

Thus, the Fourier series of the forcing function is

f(t) ∼
5

2
+

2

�

∞
∑

k=1

(−1)k
cos (2k+1)�t

2

2k + 1
.

Let y(t) = A0

2 +
∑

∞

n=1(An cos
n�t
2 +Bn sin

n�t
2 ) be a 4-periodic solution of

y′′ +10y = f(t) expressed as the sum of its Fourier series. Then y(t) will
satisfy the hypotheses of Theorem 3 of Section 10.5. Thus, differentiating
twice will give

y′′(t) =

∞
∑

n=1

[

−
n2�2

4
An cos

n�t

2
−

n2�2

4
Bn sin

n�t

2

]

.

Substituting into the differential equation gives

y′′(t) + 10y(t) = 5A0 +

∞
∑

n=1

[

An(10−
n2�2

4
) cos

n�t

2
+Bn(10−

n2�2

4
) sin

n�t

2

]

=
5

2
+

2

�

∞
∑

k=1

(−1)k
cos (2k+1)�t

2

2k + 1
.

Comparing corresponding coefficients of cosn�t and sinn�t gives the
equations
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5A0 =
5

2

An

(

10−
n2�2

4

)

= 0 for all even n ≥ 1

A2k−1

(

10−
(2k + 1)2�2

4

)

=
2(−1)k

�(2k + 1)
for k ≥ 1

Bn

(

10−
n2�2

4

)

= 0 for all n ≥ 1

Solving these equations gives A0 = 1/2, Bn = 0 for all n, An = 0 for n
even, and for n = 2k + 1 odd,

An = A2k+1 =
2(−1)k

(10− n2�2

4 )(2k + 1)�
.

Thus, the unique 4-periodic solution is the sum of the Fourier series ex-
pansion

y(t) =
1

4
+

∞
∑

k=1

2(−1)k

(10− n2�2

4 )(2k + 1)�
cos

n�t

2
.

7. The Fourier series of f(t) is the cosine series of f(t). It was computed in
Exercise 2 of Section 10.4 as f(t) ∼ 1

2 − 4
�2

∑

n=odd

cosn�t
n2 . Let y(t) =

A0

2 +
∑

∞

n=1(An cosn�t+Bn sinn�t) be a 2-periodic solution of y′′+5y =
f(t) expressed as the sum of its Fourier series. Then y(t) will satisfy the
hypotheses of Theorem 3 of Section 10.5. Thus, differentiating twice will
give

y′′(t) =

∞
∑

n=1

[

−n2�2An cosn�t− n2�2Bn sinn�t
]

.

Substituting into the differential equation gives

y′′(t) + y(t) =
5A0

2
+

∞
∑

n=1

[

An(5− n2�2) cosn�t+Bn(5− n2�2) sinn�t
]

=
1

2
−

4

�2

∑

n=odd

cosn�t

n2
.

Comparing corresponding coefficients of cosn�t and sinn�t gives the
equations
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5A0

2
=

1

2

An(5 − n2�2) = 0 for all even n ≥ 1

An(5 − n2�2) =
4

�2n2
for odd n ≥ 1

Bn(5 − n2�2) = 0 for all n ≥ 1

Solving these equations gives A0 = 1/5, Bn = 0 for all n, An = 0 for n
even, and for n odd,

An =
4

(5− n2�2)�2n2
.

Thus, the unique 4-periodic solution is the sum of the Fourier series ex-
pansion

y(t) =
1

10
+
∑

n=odd

4

(5− n2�2)�2n2
cosn�t.


