Device Constructions with Hyperbolas

Alfonso Croeze¹ William Kelly¹ William Smith²

¹Department of Mathematics Louisiana State University Baton Rouge, LA

²Department of Mathematics University of Mississippi Oxford, MS

July 8, 2011

<ロ> <四> <四> <日> <日> <日</p>

I SU&UoM

Croeze, Kelly, Smith

Hyperbola Definition

Conic Section

Hyperbola

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ • • ○ �

LSU&UoM

Croeze, Kelly, Smith

Hyperbola Definition

- Conic Section
- Two Foci
- Focus and Directrix

<ロ> <四> <四> <日> <日> <日</p>

LSU&UoM

Croeze, Kelly, Smith

The Project

- Basic constructions
- Constructing a Hyperbola

<ロ> <四> <四> <日> <日> <日</p>

LSU&UoM

Advanced constructions

Croeze, Kelly, Smith Device Constructions with Hyperbolas

Rusty Compass

Theorem

Given a circle centered at a point A with radius r and any point C different from A, it is possible to construct a circle centered at C that is congruent to the circle centered at A with a compass and straightedge.

< (17) > <

.∃⇒ . ∢

I SU&UoM

Croeze, Kelly, Smith Device Constructions with Hyperbolas

Croeze, Kelly, Smith

Device Constructions with Hyperbolas

LSU&UoM

2

◆□> ◆圖> ◆国> ◆国>

LSU&UoM

Croeze, Kelly, Smith

Angle Duplication

<ロ> <四> <四> <日> <日> <日</p>

æ

LSU&UoM

Croeze, Kelly, Smith

Angle Duplication

Croeze, Kelly, Smith

LSU&UoM

◆□→ ◆□→ ◆三→ ◆三→

2

LSU&UoM

Croeze, Kelly, Smith

Constructing a Perpendicular

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▼ つへで

LSU&UoM

Croeze, Kelly, Smith

Croeze, Kelly, Smith

Device Constructions with Hyperbolas

LSU&UoM

2

◆□→ ◆□→ ◆三→ ◆三→

 Trisection of an angle and doubling the cube cannot be accomplished with a straightedge and compass.

イロト イヨト イヨト イ

LSU&UoM

Croeze, Kelly, Smith Device Constructions with Hyperbolas

We Need to Draw a Hyperbola!

 Trisection of an angle and doubling the cube cannot be accomplished with a straightedge and compass.

(日) (同) (三) (

I SU&UoM

• We needed a way to draw a hyperbola.

We Need to Draw a Hyperbola!

- Trisection of an angle and doubling the cube cannot be accomplished with a straightedge and compass.
- We needed a way to draw a hyperbola.
- Items we needed:
 - one cork board
 - one poster board
 - one pair of scissors
 - one roll of string
 - a box of push pins
 - some paper if you do not already have some
 - a writing utensil
 - some straws, which we picked up at McDonald's

< ロ > < 同 > < 三 > < 三

I SU&UoM

The Device

The Device for Drawing Hyperbolas

Croeze, Kelly, Smith

LSU&UoM

Croeze, Kelly, Smith

<ロ> <四> <四> <日> <日> <日</p>

э

LSU&UoM

Croeze, Kelly, Smith

Hyperbolas and Triangles

Lemma

Let $\triangle ABP$ be a triangle with the following property: point P lies along the hyperbola with eccentricity 2, B as its focus, and the perpendicular bisector of \overline{AB} as its directrix. Then $\angle B = 2\angle A$.

Proof.

$$h^{2} = a^{2} - (c - b)^{2}$$

$$h^{2} = g^{2} - (c + b)^{2}$$

$$\vdots$$

$$\frac{a}{b} = 2$$

$$\vdots$$

$$2\left(\frac{h}{g}\right)\left(\frac{b+c}{g}\right) = \frac{h}{a}$$

$$2\sin(\angle A)\cos(\angle A) = \sin(\angle B)$$

$$\sin(2\angle A) = \sin(\angle B)$$

$$2\angle A = \angle B$$

Croeze, Kelly, Smith

Device Constructions with Hyperbolas

200

LSU&UoM

Lemma

Let $\triangle ABP$ be a triangle such that $\angle B = 2\angle A$. Then point P lies along the hyperbola with eccentricity 2, B as its focus, and the perpendicular bisector of \overline{AB} as its directrix.

∃ ► < ∃ ►</p>

LSU&UoM

Proof.

$$2\angle A = \angle B$$

$$\sin(2\angle A) = \sin(\angle B)$$

$$2\sin(\angle A)\cos(\angle A) = \sin(\angle B)$$

$$2\left(\frac{h}{g}\right)\left(\frac{b+c}{g}\right) = \frac{h}{a}$$

$$\dots$$

$$(a-2b)(2c-a) = 0$$

$$\frac{a}{b} = 2$$

≣ ৩৭০ LSU&U₀M

◆□→ ◆□→ ◆三→ ◆三→

Croeze, Kelly, Smith

Result

Theorem

Let \overline{AB} be a fixed line segment. Then the locus of points P such that $\angle PBA = 2 \angle PAB$ is a hyperbola with eccentricity 2, with focus B, and the perpendicular bisector of \overline{AB} as its directrix.

Trisecting the Angle - The Classical Construction

- Let *O* denote the vertex of the angle.
- Use a compass to draw a circle centered at O, and obtain the points A and B on the angle.
- Let this hyperbola intersect the circle at *P*.
- Then *OP* trisects the angle.

Croeze, Kelly, Smith

Trisecting the Angle

Given an angle $\angle O$, mark a point A on on the the given rays.

LSU&UoM

Croeze, Kelly, Smith

Trisecting the Angle

Draw a circle, centered at O with radius OA. Mark the intersection on the second ray B, and draw the segment AB.

LSU&UoM

Croeze, Kelly, Smith

Trisecting the Angle

Draw a circle, centered at O with radius OA. Mark the intersection on the second ray B, and draw the segment AB.

LSU&UoM

Croeze, Kelly, Smith

Divide the segment \overline{AB} into 6 equal parts: to do this, we pick a point G_1 , not on \overline{AB} , and draw the ray $\overline{AG_1}$. Mark points G_2 , G_3 , G_4 , G_5 , and G_6 on the ray such that:

LSU&UoM

Croeze, Kelly, Smith

Draw $\overline{G_6B}$. Draw lines through G_1 , G_2 , G_3 , G_4 and G_5 parallel to $\overline{G_6B}$. Each intersection produces equal length line segments on \overline{AB} . Mark each intersection as shown, and treat each segment as a unit length of one.

LSU&UoM

Croeze, Kelly, Smith

Extend AB past A a length of 2 units as shown below. Mark this point F_2 . Construct a line perpendicular to AB through the point D_1 . Using F_2 and B as the foci and V as the vertex, use the device to construct a hyperbola, called h. Since the distance from the the center, C, to F_1 is 4 units and the distance C to the vertex, V, is 2 units, the hyperbola has eccentricity of 2 as required.

Mark the intersection point between the hyperbola, h, and the circle \widehat{OA} as P. Draw the segment \overline{OP} . The angle $\angle POB$ trisects $\angle AOB$.

LSU&UoM

Croeze, Kelly, Smith

Start with a given unit length of \overline{AB} .

Croeze, Kelly, Smith Device Constructions with Hyperbolas

Start with a given unit length of \overline{AB} .

Construct a square with side \overline{AB} and mark the point shown.

Croeze, Kelly, Smith

LSU&UoM

Draw a line *I* through the points *A* and *E*. Extend line \overline{AB} past *B* a unit length of \overline{AB} . Draw a circle, centered at *A*, with radius \overline{AC} and mark the intersection on *I* as *V*. Draw a circle centered at *E* with radius \overline{AE} and mark the intersection on *I* as F_1 . Draw the circle centered at *A* with radius $\overline{AF_1}$ and mark that intersection on *I* as F_2 . Bisect the segment \overline{EB} and mark the point *O*.

Croeze, Kelly, Smith

Draw a circle centered at O with a radius of \overline{OA} . Using the device, draw a hyperbola with foci F_1 and F_2 and vertex V.

< 17 ▶

LSU&UoM

Croeze, Kelly, Smith Device Constructions with Hyperbolas The circle intersects the hyperbola twice. Mark the leftmost intersection X and draw a perpendicular line from \overline{AC} to X. This segment has length $\sqrt[3]{2}$.

LSU&UoM

Croeze, Kelly, Smith Device Constructions with Hyperbolas

Construction Proof

- We can easily prove that the above construction is valid if we translate the above into Cartesian coordinates.
- If we allow the point A to be treated as the origin of the x y plane and B be the point (1,0), we can write the equations of the circle and hyperbola.
- The circle is centered at 1 unit to the right and ¹/₂ units up, giving it a center of (1, ¹/₂) and a radius of √⁵/₄. This gives the circle the equation:

$$(x-1)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{5}{4}$$

(ロ) (四) (三) (三)

I SU&UoM

- The hyperbola, being rectangular with vertex $(\sqrt{2}, \sqrt{2})$, has the equation xy = 2, so y = 2/x.
- Substituting this expression into the circle's equation and solving for x yields the following:

$$(x-1)^{2} + \left(\frac{2}{x} - \frac{1}{2}\right)^{2} = \frac{5}{4}$$
$$x^{2} - 2x + \frac{4}{x^{2}} - \frac{2}{x} = 0$$
$$x^{4} - 2x - 2x^{3} + 4 = 0$$
$$(x^{3} - 2)(x - 2) = 0$$

- From here we can see that both $x = \sqrt[3]{2}$ and x = 2 are solutions.
- This proves that the horizontal distance from the *y*-axis to the point X is $\sqrt[3]{2}$.

I SU&UoM

Croeze, Kelly, Smith Device Constructions with Hyperbolas

- Heath, T., *A History of Greek Mathematics*, Dover Publications, New York, 1981.
- Apostol, T.M. and Mnatsakanian, M.N., Ellipse to Hyperbola: With This String I Thee Wed, Mathematics Magazine 84 (2011) 83-97.
- http://en.wikipedia.org/wiki/Compass_equivalence_theorem

(日) (同) (三) (三)

I SU&UoM

Acknowledgements

- Dr. Mark Davidson
- Dr. Larry Smolinsky

<ロ> <四> <四> <日> <日> <日</p>

LSU&UoM

Irina Holmes

Croeze, Kelly, Smith Device Constructions with Hyperbolas

Croeze, Kelly, Smith Device Constructions with Hyperbolas LSU&UoM