Device Constructions with Hyperbolas

Alfonso Croeze¹, William Kelly¹, William Smith²

¹Department of Mathematics
Louisiana State University
Baton Rouge, LA

²Department of Mathematics
University of Mississippi
Oxford, MS

July 8, 2011
Hyperbola Definition

- Conic Section
Hyperbola Definition

- Conic Section
- Two Foci
- Focus and Directrix
The Project

- Basic constructions
- Constructing a Hyperbola
- Advanced constructions
Theorem

Given a circle centered at a point A with radius r and any point C different from A, it is possible to construct a circle centered at C that is congruent to the circle centered at A with a compass and straightedge.
Angle Duplication

Device Constructions with Hyperbolas
Angle Duplication

Device Constructions with Hyperbolas
Device Constructions with Hyperbolas
Constructing a Perpendicular

Device Constructions with Hyperbolas
Device Constructions with Hyperbolas
We Need to Draw a Hyperbola!

- Trisection of an angle and doubling the cube cannot be accomplished with a straightedge and compass.
We Need to Draw a Hyperbola!

- Trisection of an angle and doubling the cube cannot be accomplished with a straightedge and compass.
- We needed a way to draw a hyperbola.
We Need to Draw a Hyperbola!

- Trisection of an angle and doubling the cube cannot be accomplished with a straightedge and compass.
- We needed a way to draw a hyperbola.
- Items we needed:
 - one cork board
 - one poster board
 - one pair of scissors
 - one roll of string
 - a box of push pins
 - some paper if you do not already have some
 - a writing utensil
 - some straws, which we picked up at McDonald’s
The Device for Drawing Hyperbolas
$R = \text{length of tube}$

$C = \text{length of string}$
\[C = PF_1 + (R - PF_2) + R \]
\[PF_1 - PF_2 = C - 2R \]
Lemma

Let \(\triangle ABP \) be a triangle with the following property: point \(P \) lies along the hyperbola with eccentricity 2, \(B \) as its focus, and the perpendicular bisector of \(AB \) as its directrix. Then \(\angle B = 2 \angle A \).
Proof.

\[h^2 = a^2 - (c - b)^2 \]
\[h^2 = g^2 - (c + b)^2 \]
\[
\begin{align*}
\frac{a}{b} &= 2 \\
\frac{2 \left(\frac{h}{g} \right) \left(\frac{b + c}{g} \right)}{2 \sin(\angle A) \cos(\angle A)} &= \sin(\angle B) \\
\sin(2\angle A) &= \sin(\angle B) \\
2\angle A &= \angle B
\end{align*}
\]
Lemma

Let \(\triangle ABP \) be a triangle such that \(\angle B = 2\angle A \). Then point \(P \) lies along the hyperbola with eccentricity 2, \(B \) as its focus, and the perpendicular bisector of \(AB \) as its directrix.
Proof.

\[2 \angle A = \angle B \]
\[\sin(2\angle A) = \sin(\angle B) \]
\[2 \sin(\angle A) \cos(\angle A) = \sin(\angle B) \]
\[2 \left(\frac{h}{g} \right) \left(\frac{b + c}{g} \right) = \frac{h}{a} \]
\[\ldots \]
\[(a - 2b)(2c - a) = 0 \]
\[\frac{a}{b} = 2 \]
Theorem

Let \overline{AB} be a fixed line segment. Then the locus of points P such that $\angle PBA = 2\angle PAB$ is a hyperbola with eccentricity 2, with focus B, and the perpendicular bisector of \overline{AB} as its directrix.
Let \(O \) denote the vertex of the angle.

Use a compass to draw a circle centered at \(O \), and obtain the points \(A \) and \(B \) on the angle.

Construct the hyperbola with eccentricity \(\epsilon = 2 \), focus \(B \), and directrix the perpendicular bisector of \(AB \).

Let this hyperbola intersect the circle at \(P \).

Then \(OP \) trisects the angle.
Trisecting the Angle

- Given an angle $\angle O$, mark a point A on the given rays.
Trisecting the Angle

- Draw a circle, centered at O with radius OA. Mark the intersection on the second ray B, and draw the segment AB.

![Diagram of trisecting an angle]
Trisecting the Angle

- Draw a circle, centered at O with radius OA. Mark the intersection on the second ray B, and draw the segment AB.
Divide the segment \overline{AB} into 6 equal parts: to do this, we pick a point G_1, not on \overline{AB}, and draw the ray $\overline{AG_1}$. Mark points G_2, G_3, G_4, G_5, and G_6 on the ray such that:

$$\overline{AG_1} = \overline{G_1G_2} = \overline{G_2G_3} = \overline{G_3G_4} = \overline{G_4G_5} = \overline{G_5G_6}.$$
Draw G_6B. Draw lines through G_1, G_2, G_3, G_4 and G_5 parallel to G_6B. Each intersection produces equal length line segments on AB. Mark each intersection as shown, and treat each segment as a unit length of one.
Extend \overline{AB} past A a length of 2 units as shown below. Mark this point F_2. Construct a line perpendicular to AB through the point D_1. Using F_2 and B as the foci and V as the vertex, use the device to construct a hyperbola, called h. Since the distance from the center, C, to F_1 is 4 units and the distance C to the vertex, V, is 2 units, the hyperbola has eccentricity of 2 as required.
Mark the intersection point between the hyperbola, \(h \), and the circle \(\hat{OA} \) as \(P \). Draw the segment \(\overline{OP} \). The angle \(\angle POB \) trisects \(\angle AOB \).
Constructing $\sqrt[3]{2}$

Start with a given unit length of \overline{AB}.

\overline{AB}
Constructing $\sqrt[3]{2}$

Start with a given unit length of \overline{AB}.

Construct a square with side \overline{AB} and mark the point shown.
Draw a line l through the points A and E. Extend line \overline{AB} past B a unit length of \overline{AB}. Draw a circle, centered at A, with radius \overline{AC} and mark the intersection on l as V. Draw a circle centered at E with radius \overline{AE} and mark the intersection on l as F_1. Draw the circle centered at A with radius $\overline{AF_1}$ and mark that intersection on l as F_2. Bisect the segment \overline{EB} and mark the point O.

Croeze, Kelly, Smith
Device Constructions with Hyperbolas
LSU&UoM
Draw a circle centered at O with a radius of \overline{OA}. Using the device, draw a hyperbola with foci F_1 and F_2 and vertex V.
The circle intersects the hyperbola twice. Mark the leftmost intersection X and draw a perpendicular line from \overline{AC} to X. This segment has length $\sqrt{2}$.

![Diagram of circle intersecting hyperbola]
Construction Proof

- We can easily prove that the above construction is valid if we translate the above into Cartesian coordinates.
- If we allow the point A to be treated as the origin of the x-y plane and B be the point $(1, 0)$, we can write the equations of the circle and hyperbola.
- The circle is centered at 1 unit to the right and $\frac{1}{2}$ units up, giving it a center of $(1, \frac{1}{2})$ and a radius of $\sqrt{\frac{5}{4}}$. This gives the circle the equation:

$$ (x - 1)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{5}{4}. $$
The hyperbola, being rectangular with vertex \((\sqrt{2}, \sqrt{2})\), has the equation \(xy = 2\), so \(y = \frac{2}{x}\).

Substituting this expression into the circle’s equation and solving for \(x\) yields the following:

\[
(x - 1)^2 + \left(\frac{2}{x} - \frac{1}{2}\right)^2 = \frac{5}{4}
\]
\[
x^2 - 2x + \frac{4}{x^2} - \frac{2}{x} = 0
\]
\[
x^4 - 2x - 2x^3 + 4 = 0
\]
\[
(x^3 - 2)(x - 2) = 0
\]

From here we can see that both \(x = \sqrt[3]{2}\) and \(x = 2\) are solutions.

This proves that the horizontal distance from the \(y\)-axis to the point \(X\) is \(\sqrt[3]{2}\).
Bibliography

- [Compass equivalence theorem](http://en.wikipedia.org/wiki/Compass_equivalence_theorem)
Acknowledgements

- Dr. Mark Davidson
- Dr. Larry Smolinsky
- Irina Holmes