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The Exponential Function
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Properties

CeA0) — 1

. D(et') = Ae/t where D is the differentiation with respect to ¢

— ! —1 _
. For all ¢, e?? is invertible so, et~ = e~ 4!

. When D(eAt) = AeAt with the initial condition e4(®) = ( then there is a
unique solution which is the zero vector

. edeB = eAtB when AB = BA




Linear Algebra Definitions

Eigenvalue
Eigenvector
Eigenspace
Image Space
Span




The Laplace Transform Method

et = L7 (s — A)~1}
Ca(s) = det(sl — A)

L{e} = (sI—A)!
He) = Cﬂl(s)B
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An Example

4 2 2
A=12 4 2
2 2 4
s—4 -2 =2
sl — A = -2 s—4 =2
-2 -2 s-—4
Ca(s) = s°—125%+ 365 — 32

(s—2)%*(s—8) = 0
s = 2.8 *




Using the Laplace Transform
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Equations for Coefficient Matrices
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When t=0

M+ P
2M + N + 8P
AM + AN + 64P
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Solving for M, N and P
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P = i
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Projections
>

If an operator, like matrix M, is squared and equals
itself then we say that M is a projection.
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Spectral Decomposition

A
A

2M + N + 8P
2M + 8P

A = Z ;M.
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Eigenspace of )\,




Image Space of the Projections

mon={(3).(3)]
- { (1)
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The Point

Let A be a symmetric matrix, with &k distinct eigenvalues A;. There exists

matrices P; so that
A=) NP,
and P; holds the following properties:
1. I=> P
2. PP=P,

3. PP, =0,i#j].

Moreover, I'm(P;) = E; where E; is the eigenspace of A;.
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