
DECOMPOSING A SYMMETRIC MATRIX BY WAY
OF ITS EXPONENTIAL FUNCTION

MALIHA BAHRI, WILLIAM COLE, BRAD JOHNSTON,
AND MADELINE MAYES

Abstract. It is well known that one can develop the spectral
theorem to decompose a matrix. In this article, we develop this
structure theorem through an uncommon method by examining
the matrix exponential of a symmetric matrix, which is explicitly
computable by the Laplace transform.

1. eAt, Its Properties, and Concepts in Linear Algebra

Often we try to extend ideas from a familiar space into an unfamiliar
one. With this train of thought in mind, consider the Taylor expansion
of the real exponential.

eat = 1 + at+
a2t2

2!
+
a3t3

3!
+
a4t4

4!
+ . . .

Based on this Taylor expansion, one commonly defines the matrix ex-
ponential for a matrix A to be

eAt = I + At+
A2t2

2!
+
A3t3

3!
+
A4t4

4!
+ . . .

Furthermore, eAt has the following properties:

(1) eA(0) = I,
(2) D(eAt) = AeAt, where D is the differentiation with respect to t,

(3) for all t, eAt is invertible so, eAt
−1

= e−At,
(4) when D(eAt) = AeAt with the initial condition eA(0) = 0 then

there is a unique solution which is the zero vector, and
(5) eAeB = eA+B when AB = BA.

Before we begin, here are some important definitions to help under-
stand our paper.

Definition 1.1. A scalar λ is called an eigenvalue of the matrix A if
there exists a non-zero vector v such that Av = λv.
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Definition 1.2. A non-zero vector v is called an eigenvector of the
matrix A if there exists a scalar λ such that Av = λv.

Definition 1.3. The eigenspace Ei for a matrix A for its eigenvalue
λi is the set of all vectors V such that there exists a v ∈ V where
Av = λiv.

Definition 1.4. The image space of a matrix A is the set of all W ⊆ V
and there exists a w ∈ W and v ∈ V such that A(v) = w and we denote
this as Im(A).

Definition 1.5. For any subset v of V the set of all linear combinations
of vectors in v is called the set spanned by v.

2. Cayley-Hamilton Theorem and eAt

The Cayley-Hamilton Theorem states that if CA(s) is the character-
istic polynomial of a matrix A, then CA(A) = 0. So using the second
property of eAt we have

DeAt = AeAt

CA(DeAt) = CA(AeAt).

We can factor out eAt since it is not a parameter of CA. Thus,

CA(D)eAt = CA(A)eAt

CA(D)eAt = 0.

Since we have eAt 6= 0 then CA(D) = 0. So, when we solve this
differential equation for each entry of eAt, βi,j, we have the form:

βi,j =
k∑

µ=1

mµ−1∑
v=0

tveλµtcµ,v.

We will have a matrix coefficient of cµ,v’s for each eλt, where λ is also
an eigenvalue of A, in other words,

(2.1) eAt =
k∑

µ=1

mµ−1∑
v=0

tveλµtMµ,v

where we call the coefficient matrices M . If an eigenvalue has a mul-
tiplicity of v ≥ 2, then its Mµ,v is multiplied by a factor of tv for each
eigenvalue λµ [2].
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3. Laplace Transform Method and eAt

Theorem 3.1. For any square matrix A and L the Laplace transform,

eAt = L−1{(sI − A)−1}.

We can also obtain the summation from 2.1 if we look at Theorem 3.1
using the Laplace transform. If we take the Laplace transform of both
sides we have

L{eAt} = (sI − A)−1.

Since all of the elements in the matrix have a factor of the characteristic
polynomial CA(s), we can say,

L{eAt} =
1

CA(s)
B

where B is a matrix of the remaining factor. If CA(s) is factorable, we
can rewrite L{eAt} as the sum

L{eAt} =
k∑

µ=1

mµ−1∑
v=0

tv
1

s− λµ
Mµ,v,

where s − λµ is a factor of CA(s) and M is a coefficient matrix from
decomposing B. When we take the inverse Laplace transform of both
sides, we again have:

(3.1) eAt =
k∑

µ=1

mµ−1∑
v=0

tveλµtMµ,v.

4. A 3x3 Example

The following example decomposes a 3 x 3 symmetric matrix.
Let

A =

4 2 2
2 4 2
2 2 4

 .

First, we find the characteristic polyonmial by the formula
CA(λ) = det(λI − A). We get

CA(λ) = (λ− 8)(λ− 2)2.

If we set the characteristic polynomial equal to 0, we find the eigen-
values are λ1 = 2 with multiplicity 2 and λ2 = 8. Using the equation
from 2.1 and 3.1, we rewrite eAt = Meλ1 +Nteλ1 +Peλ2 . Now, we can
plug in our eigenvalues to get

eAt = Me2t +Nte2t + Pe8t.
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Using the properties of eAt, we can derive the 2nd and 3rd derivatives
to find

AeAt = 2Me2t +N(e2t + 2te2t) + 8Pe8t

A2eAt = 4Me2t +N(4e2t + 4te2t) + 64Pe8t.

If we evalute these equations at t=0, then we get the following system
of equations:

I = M + P

A = 2M +N + 8P

A2 = 4M + 4N + 64P.

By solving this system of equations we find the following matrices:

M =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

,

N =

0 0 0
0 0 0
0 0 0

,

P =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

.

Definition 4.1. If an operator, like matrix M , is squared and equals
itself then we say that M is a projection.

So we square these matrices to find

M2 =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

,

P 2 =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

.

We see that M = M2 and P = P 2 which shows that M and P are
projections.
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It is now clear that A is decomposed into three matrices. However,
we can omit N because it is the zero matrix and we write:

A = 2M + 8P

= 2

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

+ 8

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


We now realize that we have rewritten A as the eigenvalues multiplied
by the projection matrices. This is known as a spectral decomposition.

Another important thing to note is that these matrices are projec-
tions onto their corresponding eigenspaces. In other words,

Im{M} = eigenspace of 2

Im{P} = eigenspace of 8.

First we calculate the image space, which is equal to the span of the
columns.

So the image space of M is

span


 2
−1
−1

 ,

−1
2
−1

 .

Next we find the basis of the eigenspace of λ = 2, and this is 1
0
−1

 ,

 0
1
−1

 .

We use the same method for P to find that the image space of P , is

span


1

1
1

 ,

and the basis of the eigenspace of λ = 8 is1
1
1


So, it is clear that the image space of P is equal to the eigenspace of
λ = 8.
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To show that the image space of M is equal to the eigenspace of 2,
we write the eigenspace as a linear combination of the two bases.

2

 1
0
−1

− 1

 0
1
−1

 =

 2
−1
−1



−1

 1
0
−1

+ 2

 0
1
−1

 =

−1
2
−1


From these results, we can conclude that the image spaces of M and

P are equal to the eigenspaces.

5. Looking at 2x2 Matrices

When given a 2 x 2 matrix A, the characteristic polynomial is

CA(λ) = (λ− α11)(λ− α22)− (α12)(α22).

Setting CA(λ) = 0, we find the eigenvalues of A. Because n = 2,
CA(λ) will be a quadratic equation when set equal to zero. Solving
this quadratic equation yields one or two distinct values in the complex
reals. Examining a general 2 x 2 matrix A,

A =

(
α11 α12

α21 α22

)
.

The first case that we are presented with is there being one eigenvalue
with multiplicity 2. The properties of eAt and equation 3.1 state

eAt = Meλt +Nteλt

and differentiating eAt gives us

AeAt = λMeλt +N(eλt + λteλt).

Evaluating these equations at t=0 produces the following system of
equations:

I = M

A = λI +N

We see from the first equation M is the identity matrix and N = A−λI.
Futhermore, N is a nilpotent matrix and M is a projection.

Definition 5.1. A nilpotent matrix M is a matrix where there exists
a u such that Mu = 0.
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The second case that could arise is when we have two distinct eigen-
values associated with matrix A. We can use the properties of eA(t) to
find the first derivative.

AeAt = λ1Meλ1t + λ2Ne
λ2t

When we evaluate both of these equations at t = 0, the following
system of equations result

I = M +N

A = λ1M + λ2N.

From here we can find each entry of the coefficient matrices M and
N by finding each entry of the matrix. Since the identity matrix equals

I =

(
1 0
0 1

)
.

From the first equation we find that

M11 +N11 = 1

M12 +N12 = 0

M21 +N21 = 0

M22 +N22 = 1.

We also know that

λ1M11 + λ2N11 = α11

λ1M12 + λ2N12 = α12

λ1M21 + λ2N21 = α21

λ1M21 + λ2N11 = α21.

Combining these equations we can solve for the coefficient matrices
M and N .

M =

(α11−λ2

λ1−λ2

α12

λ1−λ2
α21

λ1−λ2

α22−λ2

λ1−λ2

)
.

N =

(
1−(α11−λ2)
λ1−λ2

−α12

λ1−λ2
−α21

λ1−λ2

1−(α22−λ2)
λ1−λ2

)
.

Presented with a matrix A and computing the eigenvalues, we can
easily find the coefficient matrices M and N . Next, squaring M and
N will show the matrices are projections. Let

A =

(
1 3
5 3

)
.

The eigenvalues associated with this matrix are λ1 = 6, and λ2 = −2.



8 M. BAHRI, W. COLE, B. JOHNSTON, AND M. MAYES

M =

(
3/8 3/8
5/8 5/8

)
N =

(
5/8 −3/8
−5/8 3/8

)
.

Squaring M and N yields

M2 =

(
3/8 3/8
5/8 5/8

)
N2 =

(
5/8 −3/8
−5/8 3/8

)
.

Thus, they are projections.

6. A Structure Theorem for Symmetric Matrices

Lemma 6.1. Let N be a nilpotent matrix of order m. If N is symmet-
ric then N = 0.

Proof. for 6.1:
Let w ∈ ker(N) and v /∈ ker(N).
Assume NPv 6= 0 for some p ∈ N.

0 =
〈
Np−1v,Nw

〉
=
〈
NPv, w

〉
So NP ∈ ker(N)⊥ and NPv 6= 0.
Thus, NP /∈ ker(N) and Np+1v 6= 0,
NPv 6= 0→ Np+1v 6= 0

Therefore Nv 6= 0 implies NPv 6= 0 for all p ∈ N. But this is false since
N is nilpotent. Thus N = 0.

�

Theorem 6.2. Let A be a symmetric matrix, with k distinct eigenval-
ues λi. There exists matrices Pi so that

A =
∑

λiPi

and Pi holds the following properties:

(1) I =
∑
Pi

(2) P 2
i = Pi

(3) PiPj = 0, i 6= j.

Moreover, Im(Pi) = Ei where Ei is the eigenspace of λi.

Proof. (i)
In order to prove that I =

∑
Pi, recall 2.1,

eAt =
k∑

µ=1

mµ−1∑
v=0

tveλµtMµ,v.
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If we set t = 0, it is clear that

I =
k∑

µ=1

Mµ,v.

(ii)
In order prove that P 2

i = Pi and that PiPj = 0 when i 6= j we simplify
2.1 and let

Mµ,v = 0 for v ≥ mµ,

so 2.1 becomes

eAt =
k∑

u=1

n∑
v=0

tveλµtMµ,v

where n is the highest order of the eigenvalues of A.

Thus for arbitrary constants r and s we have

eAreAs =
k∑

ρ,ξ=1

n∑
σ,η=0

rσsηeλρr+λξsMρ,σMξ,η

eA(r+s) =
k∑

µ=1

n∑
v=0

(r + s)veλµ(r+s)Mµ,v.

Recall the Kronecker Delta

δij = 1 if and only if i = j

We can rewrite our sum as

eA(r+s) =
k∑

ρ,ξ=1

n∑
v=0

(r + s)vδρ,ξe
λρr+λξsMρ,v.

By employing the Binomial Theorem, we once more can rewrite our
sum,

eA(r+s) =
k∑

ρ,ξ=1

n∑
σ,η=0

δρ,ξ

(
σ + η
σ

)
rσsηeλρr+λξsMρ,σ+ν .

Using the equality established in the exponential function’s property
(5) we can find the following equation

(6.1) Mρ,σMξ,η = δρ,ξ

(
σ + η
σ

)
Mρ,σ+η.

Now fix some index ρ and set ρ = ξ and σ = η = 0. Then it is clear
that Mρ,0 is a projection matrix.
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(iii)
It is also clear from (6.1) that Mρ,σMξ,η = 0 when ρ 6= ξ.

Finally, in order prove that Im(Pi) = Ei where Ei is the eigenspace of
λi we look at equation (6.1). Let ρ and ξ remain equal and set η = 1
and let σ be arbitrary to obtain

Mρ,σ+1 = (σ + 1)−1Mρ,σMρ,1.

From this it is easy to obtain the formula

Mρ,σ = Mσ
ρ,1/σ!.

As defined before, Mρ,mρ = 0, thus M
mρ

ρ,1 = 0. So Mρ,1 is a nilpo-
tent matrix. Hence all of our other matrices in the summation can be
expressed in terms of a projection and a nilpotent matrix.

At this point, it is advantageous to change our notation to something
a bit more readable.

Mρ,0 = Pρ

Mρ,1 = Nρ

These matrices have some nice properties that can be derived from
(6.1).

(1) PµPv = δµvPv
(2) PµNv = NvPµ = δµvNv

(3) NµNv = δµvN
2
v

(4) N
mµ
µ = 0

From these equations, it is simple to see that

Mµ,v = (1/v!)N v
µPµ.

So our formula for eAt becomes,

eAt =
k∑

µ=1

mµ−1∑
v=0

(tv/v!)eλµtN v
µPµ.

We set t = 0 to see a decomposition of A:

A =
k∑

µ=1

(λµI +Nµ)Pµ =
k∑

µ=1

λµPµ +Nµ.

It is easy to show that for a symmetric matrix A, the coefficient
matrices are also symmetric. Recall the previous lemma 6.1.

Hence, we are left with the following decomposition

(6.2) A =
k∑
i=1

λiPi.
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Suppose w ∈ Im(Pi). Thus, there exists a v ∈ V such that Pi(v) = w.
Apply A to both sides of this equation to get

A(Pi(v)) = A(w).

Recall (6.2) and we see that

A(Pi(v)) = λ1P1(Pi(v)) + . . .+ λiPi(Pi(v)) + . . .+ λkPk(Pi(v))

A(Pi(v)) = λiP
2
i (v) = λiPi(v) = λiw.

Thus,

λiw = A(w).

Thus we have proved that w ∈ Ei. Hence, Im(Pi) ⊆ Ei.

Now suppose w ∈ Ei. This gives us the equation

A(w) = λiw.

Recall (6.2) and we notice that

λ1P1(w) + . . .+ λkPk(w) = λiw

λ1P1(w) + . . .+ λiPi(w)− λiw + . . .+ λkPk(w) = 0.

Now we pick a j 6= i.

λ1Pj(P1(w))+ . . .+λiPj(Pi(w))−λiPj(w)+ . . .+λkPj(Pk(w)) = Mj(0)

Since PjPi = δi,jPi, we have

λjP
2
j (w)− λiPj(w) = 0

λjPj(w) = λiPj(w).

But since we implicitly picked λi 6= λj, we can conclude that,

Pj(w) = 0 for all j 6= i

λiPi(w)− λiw = 0⇒ Pi(w) = w.

Thus w ∈ Im(Pi). Thus Ei ⊆ Im(Pi). Combined with the above result
we can conclude that Im(Pi) = Ei. �
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7. Conclusion

We see that the coefficient matrices that we derive using the Laplace
transform of the exponential matrix are projections. Moreover, these
matrices are also projections of the original symmetric matrix. There-
fore, we develop a different method to obtain the spectral decompo-
sition. The image spaces of these projections equal the eigenspaces
of their corresponding eigenvalues. It is also interesting to note, that
we do not find any nilpotent matrices in a symmetric matrix’s decom-
position besides the zero matrix. The exponential function method
to develop the spectral theorem can be extended to any matrix with
complex entries. We see this done in Dr. Ziebur’s paper [2].
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