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Abelian `-groups: Definitions

Definition 1. An abelian `-group is set A with operations 0, −, +,
and ∨ where:

(i) 〈A, 0,−,+〉 is an abelian group;

(ii) 〈A,∨〉 is join-semilattice (i.e., ∨ is associative, commutative
and idempotent);

(iii) 〈A, 0,−,+,∨〉 satisfies the distributive law

x + (y ∨ z) = (x + y) ∨ (x + z),

(i.e., each translation is a symmetry of 〈A,∨〉).

Example. For any topological space X , C (X ), the set of all
continuous real-valued functions on X , is an abelian `-group under
the pointwise operations. If L is a locale, C (L) is an abelian
`-group.
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Abelian `-groups: Lattice structure

Definition 2. The operations ∧, ()+, ()−, and | | are defined by

I x ∧ y := −
(
(−x) ∨ (−y)

)
.

I x+ := x ∨ 0, x− := (−x) ∨ 0.

I |x | := x ∨ −x .

Fact. 〈A,∨,∧〉 is a distributive lattice; see the Exercises, below.

Remarks:

I By Definition 1, for every b ∈ A, the translation a 7→ b + a is
a symmetry of 〈A,∨,∧〉.

I By Definition 2, 〈A,∨,∧〉 is “dually symmetric” under the
reflection a 7→ −a.
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Exercises

1. Let 〈L,∨〉 be a join semilattice. Define a relation ≤ on L by
a ≤ b ⇐⇒ : b = a ∨ b. Show that ≤ is a partial order, and for all a, b ∈ L,
a ∨ b is the least upper bound of a and b.

In the remaining exercises A is an abelian `-group and ≤ is the partial order on A induced by ∨, as in Exercise 1.

2. Show that for all a, b, c, d ∈ A: if a ≤ b and c ≤ d then a + c ≤ b + d . (In
particular, a ≤ b ⇐⇒ 0 ≤ b − a.)

3. Consequences of distributivity of + over ∨. Show that for all a, b ∈ A:

(i) a = a+ − a−.

(ii) a+ + b+ ≥ (a + b)+.

(iii) (b − a)+ ≥ b+ − a+ ≥ −
(
(a− b)+

)
.

(iv) If a ∧ b = 0, then (a− b)+ = a and (a− b)− = b.

(v) For all n ∈ N, n (a ∨ 0) = n a ∨ (n − 1) a ∨ · · · ∨ a ∨ 0.

(vi) From (v) deduce: if 0 < n ∈ N and 0 ≤ n a then 0 ≤ a.
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Exercises (cont.)

4. Properties of | |. Show that for all a, b ∈ A:

(i) 0 ≤ |a|. Hint. a ≤ |a| and −a ≤ |a|. Use Exercises 2 and 3(vi).

(ii) a+ + a− = |a|.
(iii) |a + b| ≤ |a|+ |b|.

5. Show that for all x , y , z ∈ A, x + (y ∧ z) = (x + y) ∧ (x + z). Show that
a 7→ −a is an order-reversing automorphism of A, and accordingly that a ∧ b is
the greatest lower bound of a and b; thus, 〈A,∨,∧〉 is a lattice.

6. Suppose ai , bj ∈ A and ai ∧ bj = 0 for i = 1, . . .m and j = 1, . . . n. Show:

(i) (a1 + a2) ∧ b1 = 0.

(ii) (a1 + · · ·+ am) ∧ (b1 + · · ·+ bn) = 0.

7. Suppose a, b ∈ A and n ∈ N. Show:

(i) (n a)+ = n(a+). Hint. n a = n(a+)− n(a−). By 6(ii), n(a+) ∧ n(a−) = 0. Now use 3(iv).

(ii) n (a ∨ b) = n a ∨ n b, and n (a ∧ b) = n a ∧ n b.
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Exercises (cont.)

8. Show that 〈A,∨,∧〉 is a distributive lattice.
Hint. It is enough to show that (x ∧ y)+ = x+ ∧ y+. The relation (x ∧ y)+ ≤ x+ ∧ y+ is immdiate. For the

other inequality, let z := (x ∧ y)+ − (x ∧ y). Show 0 ≤ x + z & x ≤ x + z and hence x+ ≤ x + z. Similarly

y+ ≤ y + z. Thus x+ ∧ y+ ≤ (x ∧ y) + z = (x ∧ y)+.

9. Suppose X ⊆ A is a set. Show that the set of all elements of A that can be
written in the form

p∨
i=1

q∧
j=1

r∑
k=1

nijkxijk ,

where p, q, r , nijk are positive integers and xijk ∈ X , is closed under −,+ and ∨.
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`-ideals

Definition. Let A be an abelian `-group. An `-ideal of A is a
subgroup K ⊆ A such that ∨ induces a well-defined operation on
A/K . Thus K is an `-ideal if and only if

∀a, a′, b, b′ ∈ A, a− a′, b − b′ ∈ K ⇒ (a ∨ b)− (a′ ∨ b′) ∈ K .

Lemma 1. Let K be a subgroup of A. Then K is an `-ideal if and only if:

∀a, a′ ∈ A, a− a′ ∈ K ⇒ a+ − a′+ ∈ K . (1)

Proof. (⇒) is clear. (⇐) Suppose a− a′ ∈ K . By (1) and the identity

a ∨ b = (a− b)+ + b, we have (a ∨ b)− (a′ ∨ b) ∈ K . If in addition,

b − b′ ∈ K , then (a′ ∨ b)− (a′ ∨ b′) ∈ K , so (a ∨ b)− (a′ ∨ b′) ∈ K .
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`-ideals

Theorem. Suppose A is an abelian `-group and K is a subgroup
of A. Then K is an `-ideal if and only if:

(i) ∀ x , y ∈ K , x ∨ y ∈ K (i.e., K is sup-closed), and

(ii) ∀ x , y ∈ K , z ∈ A, if x ≤ z ≤ y then z ∈ K (i.e., K is convex).

A sub-`-group of A is a subgroup of A that is sup-closed (not necessarily convex).

Proof. (⇒) Assume K is an `-ideal. If x , y ∈ K , then

(x ∨ y) + K = (x + K) ∨ (y + K) = (0 + K) ∨ (0 + K) = 0A/K ,

so x ∨ y ∈ K . Thus, K is sup-closed. If x , y ∈ A, and x ≤ y , then x ∨ y = y ,

so (x + K) ∨ (y + K) = y + K , so x + K ≤ y + K , i.e., a 7→ a + K is

order-preserving. Accordingly, if x , y ∈ K , z ∈ A, and x ≤ z ≤ y , then

0 ≤ x + K ≤ z + K ≤ y + K = 0A/K , so z + K = 0A/K , so z ∈ K . Thus, K is

convex.
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`-ideals

Proof of theorem (concluded). (⇐) Suppose K is a subgroup of A
that is sup-closed and convex. By Lemma 1, to show that K is an
`-ideal, it suffices to show that x − y ∈ K implies that
x+ − y+ ∈ K . So, suppose x − y ∈ K . Then also y − x ∈ K , and
by the sup-closed assumption, (x − y)+ ∈ K and (y − x)+ ∈ K .
By convexity and Exercise 6(iii), x+ − y+ ∈ K .
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The lattice of `-ideals

It is clear that any intersection of `-ideals of A is an `-ideal of A.
Thus, every subset X of A is contained in a smallest `-ideal,
namely, the intersection of all `-ideals containing X . This is
denoted 〈X 〉. We write 〈y〉 for the smallest `-ideal containing y
and 〈X , y〉 for the smallest `-ideal containing X ∪ {y}.

Proposition. If K ⊆ A is an `-ideal and a ∈ A, then

〈K , a〉 = { x ∈ A | ∃k ∈ K , ∃n ∈ N : 0 ≤ |x | ≤ k + n |a| }.

Proof. The containment ⊇ is evident. Therefore, it suffices to
show that the right hand side is an `-ideal, i.e., that it is a
subgroup of A, that it is closed under ∨ and that it is convex. The
details are left as an exercise.
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The lattice of `-ideals

For `-ideals J,K ⊆ A, we define J ∧ K := J ∩ K and
J ∨ K := 〈J ∪ K 〉.

Proposition. Suppose a, b, c ∈ A+.

1. 〈a ∧ b〉 = 〈a〉 ∧ 〈b〉.
2. 〈a ∨ b〉 = 〈a + b〉 = 〈a〉 ∨ 〈b〉.
3. 〈c〉 ∧

(
〈a〉 ∨ 〈b〉

)
=

(
〈c〉 ∧ 〈a〉

)
∨
(
〈c〉 ∧ 〈b〉

)
.

Proof. Exercise.

Remark. This shows that the principal `-ideals of A form a
distributive lattice, which we denote dA. It has bottom 〈0〉, but
does not have a top element. The frame of all `-ideals of A is
isomorphic to the frame of all lattice ideals of dA.
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`-prime `-ideals

Def. A+ := { a ∈ A | 0 ≤ a }

Fact. The following are equivalent:

1. A is totally ordered;

2. for all a, b ∈ A, a ∧ b ∈ {a, b};
3. for all a, b ∈ A, a ∧ b = 0 implies a = 0 or b = 0;

4. for all a, b ∈ A+, a ∧ b = 0 implies a = 0 or b = 0.

Fact. Suppose K ⊆ A is an `-ideal. Then A/K is totally ordered if
and only if: for all a, b ∈ A+, a ∧ b ∈ K implies a ∈ K or b ∈ K .

Definition. We say that an `-ideal K is `-prime if satisfies the
equivalent conditions of the previous fact.
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Maximal `-ideals

Theorem. Suppose a ∈ A and K is an `-ideal maximal among
those not containing a. Then K is `-prime.

Proof. Suppose x , y ∈ A+ \ K . Then |a| ≤ k + n x and |a| ≤ k + n y for some

0 ≤ k ∈ K and n ∈ N. (Note that we can find k and n that work for both x

and y .) Thus, |a| − k ≤ n x ∧ n y = n(x ∧ y). Therefore a ∈ 〈K , x ∧ y〉, which

implies that x ∧ y ∈ A+ \ K .
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What’s next?

In the next lecture, we will look at archimedean `-groups. Here are
the important topics:

I Maximal `-ideals in an archimedean `-group

I The space of e-maximal `-ideals

I The cover of an e-maximal `-ideal

I Hölder’s Theorem

I The Yosida Representation Theorem
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