A Course on the Yosida Theorem Classical & Pointfree Versions & Applications

James J. Madden, Louisiana State University

Summer 2020

・ロト・(四)・(日)・(日)・(日)

1/1

Lecture 1. Abelian ℓ -Groups Basics

Tuesday, June 9, 2020

Abelian *l*-groups: Definitions

Definition 1. An *abelian* ℓ *-group* is set A with operations 0, -, +, and \vee where:

(*i*)
$$\langle A, 0, -, + \rangle$$
 is an abelian group;

(*ii*) ⟨A, ∨⟩ is join-semilattice (i.e., ∨ is associative, commutative and idempotent);

(iii) $\langle A,0,-,+,\vee
angle$ satisfies the distributive law

$$x + (y \lor z) = (x + y) \lor (x + z),$$

(i.e., each translation is a symmetry of $\langle A, \lor \rangle$).

Example. For any topological space X, C(X), the set of all continuous real-valued functions on X, is an abelian ℓ -group under the pointwise operations. If L is a locale, C(L) is an abelian ℓ -group.

Abelian *l*-groups: Lattice structure

Definition 2. The operations \land , ()⁺, ()⁻, and || are defined by

•
$$x \wedge y := -((-x) \vee (-y)).$$

• $x^+ := x \vee 0, x^- := (-x) \vee 0.$
• $|x| := x \vee -x.$

Fact. $\langle A, \lor, \land \rangle$ is a distributive lattice; see the Exercises, below. *Remarks:*

- By Definition 1, for every b ∈ A, the translation a → b + a is a symmetry of (A, ∨, ∧).
- By Definition 2, (A, ∨, ∧) is "dually symmetric" under the reflection a → −a.

Exercises

1. Let $\langle L, \lor \rangle$ be a join semilattice. Define a relation \leq on L by $a \leq b \iff : b = a \lor b$. Show that \leq is a partial order, and for all $a, b \in L$, $a \lor b$ is the least upper bound of a and b.

In the remaining exercises A is an abelian ℓ -group and \leq is the partial order on A induced by \lor , as in Exercise 1.

2. Show that for all $a, b, c, d \in A$: if $a \le b$ and $c \le d$ then $a + c \le b + d$. (In particular, $a \le b \iff 0 \le b - a$.)

3. Consequences of distributivity of + over \vee . Show that for all $a, b \in A$:

(i)
$$a = a^{+} - a^{-}$$
.
(ii) $a^{+} + b^{+} \ge (a + b)^{+}$.
(iii) $(b - a)^{+} \ge b^{+} - a^{+} \ge -((a - b)^{+})$.
(iv) If $a \land b = 0$, then $(a - b)^{+} = a$ and $(a - b)^{-} = b$.
(v) For all $n \in \mathbb{N}$, $n(a \lor 0) = na \lor (n - 1)a \lor \cdots \lor a \lor 0$.
(vi) From (v) deduce: if $0 < n \in \mathbb{N}$ and $0 \le na$ then $0 \le a$.

Exercises (cont.)

4. *Properties of* $| \cdot |$ *.* Show that for all $a, b \in A$:

(i) $0 \le |a|$. Hint. $a \le |a|$ and $-a \le |a|$. Use Exercises 2 and 3(vi). (ii) $a^+ + a^- = |a|$. (iii) $|a + b| \le |a| + |b|$.

5. Show that for all $x, y, z \in A$, $x + (y \land z) = (x + y) \land (x + z)$. Show that $a \mapsto -a$ is an order-reversing automorphism of A, and accordingly that $a \land b$ is the greatest lower bound of a and b; thus, $\langle A, \lor, \land \rangle$ is a lattice.

6. Suppose a_i, b_j ∈ A and a_i ∧ b_j = 0 for i = 1,...m and j = 1,...n. Show:
(i) (a₁ + a₂) ∧ b₁ = 0.
(ii) (a₁ + ··· + a_m) ∧ (b₁ + ··· + b_n) = 0.

7. Suppose $a, b \in A$ and $n \in \mathbb{N}$. Show:

(*i*) $(n a)^+ = n(a^+)$. Hint. $n a = n(a^+) - n(a^-)$. By 6(ii), $n(a^+) \wedge n(a^-) = 0$. Now use 3(iv). (*ii*) $n(a \lor b) = n a \lor n b$, and $n(a \land b) = n a \land n b$.

Exercises (cont.)

8. Show that $\langle A, \lor, \land \rangle$ is a distributive lattice.

Hint. It is enough to show that $(x \land y)^+ = x^+ \land y^+$. The relation $(x \land y)^+ \le x^+ \land y^+$ is immidiate. For the other inequality, let $z := (x \land y)^+ - (x \land y)$. Show $0 \le x + z \& x \le x + z$ and hence $x^+ \le x + z$. Similarly $y^+ \le y + z$. Thus $x^+ \land y^+ \le (x \land y) + z = (x \land y)^+$.

9. Suppose $X \subseteq A$ is a set. Show that the set of all elements of A that can be written in the form

$$\bigvee_{i=1}^{p}\bigwedge_{j=1}^{q}\sum_{k=1}^{r}n_{ijk}x_{ijk},$$

where p, q, r, n_{ijk} are positive integers and $x_{ijk} \in X$, is closed under -, + and \vee .

ℓ -ideals

Definition. Let A be an abelian ℓ -group. An ℓ -ideal of A is a subgroup $K \subseteq A$ such that \vee induces a well-defined operation on A/K. Thus K is an ℓ -ideal if and only if

$$\forall a,a',b,b' \in A, \quad a-a',b-b' \in K \ \Rightarrow \ (a \lor b) - (a' \lor b') \in K.$$

Lemma 1. Let K be a subgroup of A. Then K is an ℓ -ideal if and only if:

$$\forall a, a' \in A, \quad a - a' \in K \implies a^+ - a'^+ \in K. \tag{1}$$

Proof. (\Rightarrow) is clear. (\Leftarrow) Suppose $a - a' \in K$. By (1) and the identity $a \lor b = (a - b)^+ + b$, we have $(a \lor b) - (a' \lor b) \in K$. If in addition, $b - b' \in K$, then $(a' \lor b) - (a' \lor b') \in K$, so $(a \lor b) - (a' \lor b') \in K$.

ℓ -ideals

Theorem. Suppose A is an abelian ℓ -group and K is a subgroup of A. Then K is an ℓ -ideal if and only if:

(i)
$$\forall x, y \in K, x \lor y \in K$$
 (i.e., K is *sup-closed*), and
(ii) $\forall x, y \in K, z \in A$, if $x \le z \le y$ then $z \in K$ (i.e., K is *convex*).

A sub- ℓ -group of A is a subgroup of A that is sup-closed (not necessarily convex).

Proof. (
$$\Rightarrow$$
) Assume K is an ℓ -ideal. If $x, y \in K$, then
 $(x \lor y) + K = (x + K) \lor (y + K) = (0 + K) \lor (0 + K) = 0_{A/K},$

so $x \lor y \in K$. Thus, K is sup-closed. If $x, y \in A$, and $x \le y$, then $x \lor y = y$, so $(x + K) \lor (y + K) = y + K$, so $x + K \le y + K$, i.e., $a \mapsto a + K$ is order-preserving. Accordingly, if $x, y \in K$, $z \in A$, and $x \le z \le y$, then $0 \le x + K \le z + K \le y + K = 0_{A/K}$, so $z + K = 0_{A/K}$, so $z \in K$. Thus, K is convex.

ℓ -ideals

Proof of theorem (concluded). (\Leftarrow) Suppose K is a subgroup of A that is sup-closed and convex. By Lemma 1, to show that K is an ℓ -ideal, it suffices to show that $x - y \in K$ implies that $x^+ - y^+ \in K$. So, suppose $x - y \in K$. Then also $y - x \in K$, and by the sup-closed assumption, $(x - y)^+ \in K$ and $(y - x)^+ \in K$. By convexity and Exercise 6(*iii*), $x^+ - y^+ \in K$.

The lattice of ℓ -ideals

It is clear that any intersection of ℓ -ideals of A is an ℓ -ideal of A. Thus, every subset X of A is contained in a smallest ℓ -ideal, namely, the intersection of all ℓ -ideals containing X. This is denoted $\langle X \rangle$. We write $\langle y \rangle$ for the smallest ℓ -ideal containing y and $\langle X, y \rangle$ for the smallest ℓ -ideal containing $X \cup \{y\}$.

Proposition. If $K \subseteq A$ is an ℓ -ideal and $a \in A$, then

 $\langle K, a \rangle = \{ x \in A \mid \exists k \in K, \exists n \in \mathbb{N} : 0 \le |x| \le k + n |a| \}.$

Proof. The containment \supseteq is evident. Therefore, it suffices to show that the right hand side is an ℓ -ideal, i.e., that it is a subgroup of A, that it is closed under \lor and that it is convex. The details are left as an exercise.

The lattice of ℓ -ideals

For ℓ -ideals $J, K \subseteq A$, we define $J \wedge K := J \cap K$ and $J \vee K := \langle J \cup K \rangle$.

Proposition. Suppose $a, b, c \in A^+$.

1.
$$\langle a \wedge b \rangle = \langle a \rangle \wedge \langle b \rangle$$
.
2. $\langle a \vee b \rangle = \langle a + b \rangle = \langle a \rangle \vee \langle b \rangle$.
3. $\langle c \rangle \wedge (\langle a \rangle \vee \langle b \rangle) = (\langle c \rangle \wedge \langle a \rangle) \vee (\langle c \rangle \wedge \langle b \rangle)$.

Proof. Exercise.

Remark. This shows that the principal ℓ -ideals of A form a distributive lattice, which we denote dA. It has bottom $\langle 0 \rangle$, but does not have a top element. The frame of all ℓ -ideals of A is isomorphic to the frame of all lattice ideals of dA.

$\ell\text{-prime }\ell\text{-ideals}$

Def. $A^+ := \{ a \in A \mid 0 \le a \}$

Fact. The following are equivalent:

- 1. A is totally ordered;
- 2. for all $a, b \in A$, $a \wedge b \in \{a, b\}$;
- 3. for all $a, b \in A$, $a \wedge b = 0$ implies a = 0 or b = 0;

4. for all $a, b \in A^+$, $a \wedge b = 0$ implies a = 0 or b = 0.

Fact. Suppose $K \subseteq A$ is an ℓ -ideal. Then A/K is totally ordered if and only if: for all $a, b \in A^+$, $a \land b \in K$ implies $a \in K$ or $b \in K$.

Definition. We say that an ℓ -ideal K is ℓ -prime if satisfies the equivalent conditions of the previous fact.

Theorem. Suppose $a \in A$ and K is an ℓ -ideal maximal among those not containing a. Then K is ℓ -prime.

Proof. Suppose $x, y \in A^+ \setminus K$. Then $|a| \le k + nx$ and $|a| \le k + ny$ for some $0 \le k \in K$ and $n \in \mathbb{N}$. (Note that we can find k and n that work for both x and y.) Thus, $|a| - k \le nx \land ny = n(x \land y)$. Therefore $a \in \langle K, x \land y \rangle$, which implies that $x \land y \in A^+ \setminus K$.

In the next lecture, we will look at archimedean $\ell\mbox{-}groups.$ Here are the important topics:

- Maximal ℓ -ideals in an archimedean ℓ -group
- ▶ The space of *e*-maximal *ℓ*-ideals
- ▶ The cover of an *e*-maximal *ℓ*-ideal
- Hölder's Theorem
- The Yosida Representation Theorem