A Course on the Yosida Theorem Classical & Pointfree Versions & Applications

James J. Madden, Louisiana State University

Summer 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1/9

Lecture 10 Change of Unit Examples

Tuesday, August 11, 2020

2/9

Review

Localic Yosida. Suppose A is an archimedean ℓ -group, and $e \in A^+$.

(i) Let $y : A^+ \to \mathcal{Y}A$ be the set map universal for the following relations $(a, b \in A^+)$: $(l_1) \ y(0) = \bot,$ $(l_2) \ y(a \land b) = y(a) \land y(b),$ $(l_3) \ y(a + b) = y(a) \lor y(b),$ $(l_4) \ y(a \lor b) = y(a) \lor y(b).$ $(Y) \text{ if } \{a_i\}_{i=0}^{\infty} \subseteq A^+ \text{ and } a_i \uparrow_b a, \text{ then } y(a) = \bigvee_{i=1}^{\infty} y(a_i).$

Then $\mathcal{Y}A$ is order-isomorphic to the augmentation of the frame of archimedean kernels of A.

(ii) Let $y_e : A^+ \to \mathcal{Y}_e A$ be the quotient of $\mathcal{Y}A$ obtained by adding the relation: $(U_e) \ y_e(e) = \top.$

Then $\mathcal{Y}_e A$ regular Lindelöf.

(iii) Let $\Phi_e : A \to \mathcal{R} \mathcal{Y}_e A$ be defined by

 $\Phi_e(a)(p,q) = y_e\left(\left(a - pe\right)^+ \wedge \left(qe - a\right)^+\right), \quad p,q \in \mathbb{Q}.$

Then Φ_e is an ℓ -homomorphism with kernel e^{\perp} .

Much of this is constructively valid, but the constructive content of statements about the Lindelöf property and relatively-uniformly closed ideals is not known. See "Schlitt-1991.pdf", "Banaschewski-1999.pdf", "Banaschewski-Walters-Wayland-2007.pdf".

 $\Phi_e(a) : \mathcal{R} \to \mathcal{Y}_e A$ is the "formal ratio of a to e." (Some observations)

(1) Suppose A = C(X), with X a regular Lindelöf space. If $a, e \in C(X)$ and e is strictly positive on X, then $\Phi_e(a) : \mathcal{O}(\mathbb{R}) \to \mathcal{O}X$ is the map of open sets induced by the real-valued function a/e, i.e.

$$\Phi_e(a)(p,q) = \{ x \in X \mid \frac{a(x)}{e(x)} \in (p,q) \}.$$

(2) If y(f) = y(e), then $\mathcal{Y}_e A = \mathcal{Y}_f A$, and $\Phi_e(a)$ and $\Phi_f(e)$ both belong to $\mathcal{R} \mathcal{Y}_e A$. The proposition on the next slide will show that $\Phi_e(a) \cdot \Phi_f(e) = \Phi_f(a)$. (Formally, this resembles the equality $(a/e) \cdot (e/f) = a/f$.)

(3) If $y(f) \leq y(e)$, then there is a frame quotient map $\pi_f^e : \mathcal{Y}_e(A) \to \mathcal{Y}_f(A)$, and hence a "co-restriction" map $\pi_f^e \circ _: \mathcal{RY}_eA \to \mathcal{RY}_fA$:

$$\mathcal{R} \xrightarrow{\Phi_{e}(a)} \mathcal{Y}_{e} A \xrightarrow{\pi_{f}^{e}} \mathcal{Y}_{f} A$$

Note that we may identify $\mathcal{Y}_e A$ (respectively, $\mathcal{Y}_f A$) with the interval $[\bot, y(e)]$ (respectively, $[\bot, y(f)]$) in $\mathcal{Y}A$, and $\pi_f^e(w) = w \wedge y(f)$ for any $w \in \mathcal{Y}_e A$.

Change of Unit. Proof, part 1.

Proposition (Change of Unit). If $a, e, f \in A^+$ and $y(f) \leq y(e)$, then $(\pi_f^e \circ \Phi_e(a)) \cdot \Phi_f(e) = \Phi_f(a)$.

Corollary. If $e, f \in A^+$ and $y(f) \leq y(e)$, then $(\pi_f^e \circ \Phi_e(f)) \cdot \Phi_f(e) = 1$.

Proof of Proposition. It suffices to show, for all p, q > 0:

(i)
$$\bigvee_{\substack{s,u=p\\s,u>0}} y_f \left[(a-se)^+ \wedge (e-uf)^+ \right] = y_f \left((a-pf)^+ \right)$$
, and
(ii) $\bigvee_{\substack{t,v=q\\t,v>0}} y_f \left[(te-f)^+ \wedge (vf-e)^+ \right] = y_f \left((qf-a)^+ \right)$.

Note that for any $a, b \in A^+$ and any $k \in \mathbb{Q}_{>0}$, $y(a \land kb) = y(a) \land y(kb) = y(a) \land y(b) = y(a \land b)$. We use this to get line (2), below.

Ad (i), let B := (1/2)(a - pf) and let A := (1/2)(a + pf) = B + pf = -(B - a). Then:

$$y_f \left[(a - se)^+ \wedge (e - uf)^+ \right] = y_f \left[(a - se)^+ \wedge \frac{1}{s} (se - pf)^+ \right]$$

$$\tag{1}$$

$$= y_f \left[\left(\left((a - se) \land (se - pf) \right) \lor 0 \right) - \mathsf{B} + \mathsf{B} \right]$$
(2)

$$= y_f \left[\left(\left((\mathsf{A} - se) \land (se - \mathsf{A}) \right) \lor -B \right) + \mathsf{B} \right]$$
(3)

$$= y_f \left[(-|A - se| \lor (-B)) + B \right]$$
 (4)

$$= y_f \left[\left(\mathsf{B} - |\mathsf{A} - se| \right)^+ \right] \leqslant y_f \left(B^+ \right).$$
(5)

Thus, each \bigvee -term on the left of (i) is less the the right side of (i). (Continued...)

Change of Unit. Proof, part 2.

Or goal now is to show the inequality \geq in the following:

$$\bigvee_{\substack{s\cdot u=p\\s,u>0}} y_f \left[(a-se)^+ \wedge (e-uf)^+ \right] = y_f \left((a-pf)^+ \right).$$
(6)

To this end, define for $n, i \in \mathbb{N}$:

$$g(n,i) := \left[(na - ie) \land (ie - npf) \right].$$

Note that $y_f\left(g(n,i)^+\right) = y_f\left[(a - \frac{i}{n}e)^+ \land (e - \frac{n}{i}\rho f)^+\right]$, since $y_f(a_1^+ \land a_2^+) = y_f\left((c_1a_1 \land c_2a_2)^+\right)$ for any positive rational numbers c_1, c_2 . For the same reason, this is the V-term in the LHS of (6) with s = i/n.

$$g(n,i) = \frac{na - npf}{2} + \left(\left(\frac{na + npf}{2} - ie \right) \wedge \left(ie - \frac{na + npf}{2} \right) \right)$$
(7)

$$= \frac{na - npf}{2} - \left| \frac{na + npf}{2} - ie \right|$$
(8)

$$= \frac{n}{2} \left((a - pf) - \left| (a + pf) - i \frac{2e}{n} \right| \right)$$
(9)

Observe that (since $y_f(ca) = y_f(a)$):

$$y_f\left(g(n,i)^+\right) = y_f\left(\left((a-pf) - \left|(a+pf) - i\frac{2e}{n}\right|\right)^+\right).$$

<ロ>
<日><日><日><日><日><日><日><日><日><日><10</p>
6/9

Change of Unit. Proof concluded.

Let:

$$h:=(a-pf) \tag{10}$$

$$h(n,i) := (a - pf) - \left| (a + pf) - i \frac{2e}{n} \right|$$
(11)

$$h(n) := \bigvee_{i=1}^{n^2} \left[(a - pf) - \left| (a + pf) - i \frac{2e}{n} \right| \right]$$
(12)

$$= (a - pf) - \bigwedge_{i=0}^{n^2} \left| (a + pf) - i \frac{2e}{n} \right|$$
(13)

Lemma. If $f, w, x \in A^+$, then: $\bigwedge_{i=0}^m |f - iw| \leq (|f| - mw) \vee w$, and $(x - nw)^+ \wedge w \leq \frac{1}{n}x$.

$$h - h(n) = \bigwedge_{i=0}^{n^2} \left| (a + pf) - i \frac{2e}{n} \right| \le \left((a + pf) - 2ne \right) \vee \frac{2e}{n}$$
(14)

$$(h - h(n))^{+} \wedge e \leq \left(\left((a + pf) - 2ne \right)^{+} \wedge e \right) \vee \frac{2e}{n} \leq \frac{(a + pf)}{2n} \vee \frac{2e}{n}$$
(15)

Lemma. If $a, b \in A$ and $e \in A^+$, $(a^+ \land e) - (b^+ \land e) \leq (a - b)^+ \land e$.

Using the lemma, we see that $h(n)^+ \land e$ converges to $h^+ \land e$ with regulator $(1/2)(a + pf) \lor 2e$. (We made a similar argument in Lecture 9.) This completes the proof of the inequality \ge in (6). The proof of (*ii*) is similar.

7/9

Comments on the proof.

The proof of Change of Unit and of Preservation of Addition (in Lecture 9) use similar devices. In both cases, we prove, for a certain $g \in A$ and family $\{g_s \mid s \in \mathbb{Q}\}$, that

$$y_e(g^+) = \bigvee \{ y_e(g_s^+) \mid s \in \mathbb{Q} \}.$$
(16)

We use the device of defining $h(n) := \bigvee \{ h_{i/n} \mid i = -n^2, \dots, n^2 \}$ (or $h(n) := \bigvee \{ h_{i/n} \mid i = 1, \dots, n^2 \}$), such that $y_e(g_s^+) = y_e(h_s^+)$ and observing that $\bigvee \{ y_e(h_s^+) \mid s \in \mathbb{Q} \} = \bigvee_{n=1}^{\infty} h(n)$. Then, we show that $h(n) \rightarrow_{ru} h$.

The argument seems to be an elaboration of the simple proof of:

Lemma. For
$$a, e \in A^+$$
, $\bigvee_{n=1}^{\infty} y_e \left(\left(a - \frac{e}{n}\right)^+ \right) = y_e(a)$
Proof. $0 \leq a - \left(a - \frac{e}{n}\right)^+ \leq \frac{e}{n}$, so $\left(a - \frac{e}{n}\right)^+ \uparrow_e a$.

Challenge. Simplify the proofs of Preservation of Addition and Change of Unit, while preserving their constructive validity. Generalize to provide a (constructive) proof that if A is an f-ring with ring unit e, then $\Phi_e(a \cdot b) = \Phi_e(a) \cdot \Phi_e(b)$.

Elements of \mathcal{RO} with multiplicative inverse.

[BH] "The inversion characterizations of C(L) for a locale L." Rocky Mountain Journal of Mathematics 49.7 (2019): 2107-2120. Library: "Ball-Hager-2019.pdf"

Suppose A is an archimedean ℓ -group with weak unit e.

Definition. [BH] An element $a \in A$ is said to be *kernel-maximal* if the **W**-kernel in A generated by a is all of A.

Our results shed light on the meaning of this:

Corollary to Change of Unit. Suppose A is an archimedean ℓ -group with weak unit e. The following are equivalent, for $f \in A^+$: (i) f is kernel-maximal, (ii) $y_e(f) = \top_{\mathcal{Y}_e(A)}$, (iii) $\mathcal{Y}_e(A) = \mathcal{Y}_f(A)$. If these are true, then $\Phi_e(f)$ has a multiplicative inverse in $\mathcal{RY}_e(A)$, namely $\Phi_f(e)$.

Much more is true:

Definition. [BH] An element $a \in A$ is said to be *Yosida-invertible* if there is some $f \in \Phi_e A$ such that $a \cdot f = 1$ (referring to the multiplication in $\mathcal{RY}_e A$).

Theorem. [BH] $\Phi_e A = \mathcal{R} \mathcal{Y}_e A$ iff A is divisible, uniformly complete, and every kernel-maximal element of A is Yosida-invertible.

Challenges. (1) Investigate uniform completion (Stone-Weierstrass) in the localic setting. (There is substantial lieterature on this.) (2) Conjecture: The group of invertible orthomorphisms of \mathcal{RO} is { $f \in \mathcal{RO} \mid y(a) = y(1)$ }, and this is isomorphic to \mathcal{RO} via the exponential map.