A Course on the Yosida Theorem Classical & Pointfree Versions & Applications

James J. Madden, Louisiana State University

Summer 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1/13

Lecture 11 Categories of Representations

Tuesday, August 18, 2020

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ 2/13

Review: Localic Yosida

Suppose A is an archimedean ℓ -group, and $e \in A^+$.

(i) Let $y : A^+ \to \mathcal{Y}A$ be the set map universal for the following relations $(a, b \in A^+)$:

Then $\mathcal{Y}A$ is order-isomorphic to the augmentation of the frame of archimedean kernels of A.

(ii) Let $y_e : A^+ \to \mathcal{Y}_e A$ be the quotient of $\mathcal{Y}A$ obtained by adding the relation:

 $(U_e) \ y_e(e) = \top.$

Then $\mathcal{Y}_e A$ regular Lindelöf.

(*iii*) Let $\Phi_e : A \to \mathcal{R} \mathcal{Y}_e A$ be defined by

$$\Phi_e(a)(p,q) = y_e\left((a-pe)^+ \land (qe-a)^+\right), \quad p,q \in \mathbb{Q}$$

Then Φ_e is an ℓ -homomorphism with kernel e^{\perp} .

Funtoriality of $\mathcal Y$

Suppose $\beta : A \rightarrow B$ is an ℓ -homomorphism of archimedean ℓ -groups.

- There is a frame morphism $\mathcal{Y}(\beta) : \mathcal{Y}(A) \to \mathcal{Y}(B); y(a) \mapsto y(\beta a).$
- For any $e \in A^+$, there is $\mathcal{Y}_e(\beta)$ making the following diagram commute:

(Here, we identify $\mathcal{Y}_e A$ with $[\bot, y(e)] \subseteq \mathcal{Y}A$.)

For any $e \in A^+$ and $a \in A$, $\Phi_{\beta e}(\beta a) = \mathcal{Y}_e(\beta) \circ \Phi_e(a)$:

Review: Change of Unit

The image of A under the map Φ_e is denoted by $\Phi(A, e)$. By definition, there is a containment $\Phi(A, e) \subseteq \mathcal{RY}(A, e)$. Both these ℓ -groups are canonically **W**-objects: the unit in $\mathcal{RY}(A, e)$ is the (localic) constant function 1, which is $\Phi_e(e)$. Thus, the containment is a **W**-morphism.

We have seen that if $y(f) \leq y(e)$, then there is a frame map $\pi_f^e : \mathcal{Y}(A, e) \to \mathcal{Y}(A, f)$ and an ℓ -homomorphism (actually, an ℓ -orthomorphism):

$$\rho_f^{\mathbf{e}} : \Phi(A, \mathbf{e}) \to \Phi(A, f)$$
$$\rho_f^{\mathbf{e}}(\phi) = \Phi_f(\mathbf{e}) \cdot (\pi_f^{\mathbf{e}} \circ \phi).$$

This map is "localic restriction," followed by multiplication by $\Phi_f(e)$. It is a surjection, and hence a **W**-morphism if we take $\pi_f^e \circ \Phi_e(e)$ as the weak unit of $\Phi(A, f)$. But $\pi_f^e \circ \Phi_e(e)$ is *not* in general equal to $\Phi_f(f)$, the canonical choice of weak unit in $\Phi(A, f)$. Last lecture, we proved:

Change of Unit Proposition. $\rho_f^e(\Phi_e(a)) = \Phi_f(a)$.

Example (7th-grade proportional reasoning). Suppose A is the set of real-valued functions on the 2-point space. We write (c, d) to mean the function that has value c at the first point and d at the second. Let e := (3, 4) and f := (2, 0). Then $\Phi_e(c, d) = (c/3, d/4)$ and $\Phi_f(c, d) = (c/2)$.

$$\rho_f^e(\Phi_e(c,d)) = \Phi_f(e) \cdot (\pi_f^e \circ (c/3,d/4)) = (3/2) \cdot (c/3) = (c/2) = \Phi_f(c,d).$$

Comment. The Yosida theorem produces, for each $e \in A$, a representation $\Phi(A, e) \subseteq \mathcal{Y}(A, e)$. The discussion above tells us how the different representations, as we let e vary, relate to one another.

The Category RL

Definition. RL denotes the category described as follows:

- (a) **RL**-objects are pairs (\mathcal{O}, A) , where:
 - (i) O is a regular Lindelöf frame, and
 - (ii) A is a sub- ℓ -group of \mathcal{RO} that contains 1 and is such that $\mathcal{Y}(A, 1) \cong \mathcal{O}$ (equivalently, $\{y_1(a) \mid a \in A\}$ generates \mathcal{O} as a frame).
- (b) An **RL**-morphism $\beta : (\mathcal{E}, A) \to (\mathcal{F}, B)$ is a pair consisting of:
 - (*i*) a frame morphism $\pi : \mathcal{E} \to \mathcal{F}$, and
 - (ii) a proper unit $u \in \mathcal{RF}$ such that $u \cdot (\pi \circ a) \in B$, for all $a \in A$.

Motivation. The name "RL" is intended to suggest the phrase "represented ℓ -group." The motivation here is create a means to record systematically all the data in all the possible morphisms $\Phi_e : A \rightarrow \mathcal{RY}(a, e)$, as e varies over A^+ .

Notation. \mathcal{RO} contains the constant function 1 as a distinguished weak unit. If a sub- $\ell_{STOM} A \subseteq \mathcal{RO}$ contains 1 and we want to draw attention to the fact that we are viewing 1 as an element of A, we write 1_A to denote it. If A is simply an abstract archimedean ℓ_{STOM} then the notation 1_A is meaningless, but if A contains a weak unit e, then $1_{\Phi_n}(A) = \Phi_e(e) \in \Phi_e(A)$.

Definition. Suppose $1, e \in A^+ \subseteq \mathcal{RO}$. We call $e \neq proper unit$ if y(e) = y(1).

Comment. Suppose $e, f \in A^+$. Even when both e and f are weak units (i.e., $e^{\perp} = \{0\} = f^{\perp}$), it may not be the case that y(e) = y(f). In particular, when $A \subseteq \mathcal{RO}$, there may be elements $a \in A$ such that y(1) < y(a). We had an example of this previously: Represent A = P([0, 1]) using x (the identity function from [0, 1] to \mathbb{R}) as the weak unit. Then $\mathcal{Y}(A, x) = (0, 1]$. However, $1/x \in \mathcal{RV}(A, x)$ generates an archimedean kernel that is properly larger than y(1). Observe that, $\Phi_X(x) = 1$, and $\Phi_X(1) = 1/x$.

Comment. Given $a : \mathcal{R} \to \mathcal{E}$ with $a \in A$ and unit $u \in \mathcal{RF}$, it is of course the case that $u \cdot (\pi \circ a) \in \mathcal{RF}$. The definition of **RL** demands more: $u \cdot (\pi \circ a)$ must be in \mathcal{B} . The data in the definition implies the existence of an ℓ -homomorphism $\rho : A \to B$ defined by $\rho(a) = u \cdot (\pi \circ a)$. We may refer to an **RL**-morphism by the data (π, ρ) , rather than (π, u) . In general, $\rho(\mathbf{1}_A)$ will not be equal to $\mathbf{1}_B$.

Research Problem. Does RL have limits (fiber products)? We can from limits of abelian ℓ -groups and limits of of regular Lindelöf locales; see Slide 10, below. But can we do so in a way that respects the rest of the structure in RL?

6/13

RL-presheaves

Let **C** be a category. An **RL**-presheaf on **C** is a functor Φ from **C**^{op} to **RL**.

Notation. Φ is the following data:

- For each $X \in \mathbf{C}$, $\Phi(X) = (\mathcal{O}_X, A_X)$.
- For each $f : X \rightarrow Y \in \mathbf{C}$, an **RL**-morphism

$$\mathbf{\Phi}(f) = (\pi_f : \mathcal{O}_Y \to \mathcal{O}_X, \rho_f : A_Y \to A_X),$$

This assignment must of course preserve identity and composition.

Definition. Let $[A^+]$ denote the category whose objects are the elements of A^+ , where the set hom(e, f) has a single element, denoted $f \le e$, if $y(f) \le y(e)$ and is empty otherwise.

Fact. $\pi_e^e = id_{\mathcal{Y}(A,e)}$ and $\rho_e^e = id_{\Phi(A,e)}$.

Fact. Suppose $g \leq f \leq e$. Then $\pi_g^f \pi_f^e = \pi_g^e$ and $\rho_g^f \rho_f^e = \rho_g^e$.

Representation Presheaves

Definition. Suppose A is an archimedean ℓ -group and E is a full subcategory of $[A^+]$. Then, the *representation presheaf for A over* E is the (contravariant) functor Φ from E to **RL**₁ defined (for $e, f \in E$) by:

- (*i*) $\Phi(e) := (\mathcal{Y}(A, e), \Phi(A, e))$, and
- (*ii*) $\Phi(f \le e) := (\pi_f^e, \rho_f^e).$

As mentioned previously, we may regard $\Phi(a, e) \in \mathcal{RV}(a, e)$ as the "formal ratio of *a* to *e*." Then Φ is an assemblage of data displaying all the formal ratios that can be formed with denominators in *E* and the relationships between them.

If it is necessary to keep track of the data defining Φ , we may write Φ_E , or for even more detail, $\Phi_{(A,E)}$.

Natural Transformations of Representation Presheaves

Reminder: (i) $\Phi_E(e) := (\mathcal{Y}(A, e), \Phi(A, e))$, and (ii) $\Phi_E(f \le e) := (\pi_f^e, \rho_f^e)$.

Suppose $\beta : A \to B$ is an **Arch**-morphism and $E \subseteq [A^+]$. If $y(a) \leq y(a')$, then $y(\beta a) \leq y(\beta a')$. Thus, β is a functor from *E* to βE .

Note that $\Phi_{(B,\beta E)}$ can be regarded as a composition of functors: $\Phi \circ \beta$.

There is a natural transformation $\hat{\beta}$ from $\Phi_{(A,E)}$ to $\Phi_{(B,\beta E)}$ whose component at $e \in E$ is defined as follows:

$$\hat{\beta}_e := (\mathcal{Y}(\beta, e), \mathcal{Y}(\beta, e) \circ _) : (\mathcal{Y}(A, e), \Phi(A, e)) \to (\mathcal{Y}(B, \beta e), \Phi(B, \beta e)).$$

$$e \qquad \Phi_{(A,E)}(e) \xrightarrow{\hat{\beta}_{e}} \Phi_{(B,\beta E)}(\beta e)$$

$$\leq \uparrow \qquad \Phi_{(A,E)}(f \leq e) \qquad \qquad \qquad \downarrow \Phi_{(B,\beta E)}(\beta f \leq \beta e)$$

$$f \qquad \Phi_{(A,E)}(f) \xrightarrow{\hat{\beta}_{f}} \Phi_{(B,\beta E)}(\beta f)$$

<ロト<部ト<差ト<差ト 差 のへで 9/13

Recovering A

We return to the Research Question form Slide 6.

Consider a presheaf $\Phi_{(A,E)}$.

- The maps ρ^e_f: Φ(A, e) → Φ(A, f) for all e, f ∈ E, f ≤ e form a diagram in Arch. For each e ∈ E, there is a surjective Arch-morphism Φ_e: A → Φ(A, e). If E is cofinal in A⁺, then for any a ∈ A, there is e ∈ E such that y(a) ≤ y(e). It follows that A, together with the maps Φ_e, form the limit of the ρ-diagram.
- Similarly, the maps π^e_f: 𝔅(A, e) → 𝔅(A, f) for all e, f ∈ E, f ≤ e form a diagram in **RegLin**. We conjecture that this too has a limit. We do not know if 𝔅A is regular, but if it is, then the limit would be the Lindelöfification λ𝔅A of 𝔅A.
- ▶ Question. Is there (always) an embedding $\Phi : A \rightarrow \mathcal{R}\lambda \mathcal{Y}A$ and a collection of "scaled restriction maps" $\rho_e : \Phi A \rightarrow \Phi(A, e)$?

An Example of Conrad-Martinez (simplified by Hager-Johnson)

Let \mathcal{M} be a family of infinite subsets of \mathbb{N} . For each $M \in \mathcal{M}$, let $\gamma_M \in \mathbb{R}^{\mathbb{N}}$. Then, $\mathcal{G}(\mathcal{M}, \gamma)$ denotes the sub- ℓ -group of $\mathbb{R}^{\mathbb{N}}$ generated by $\{\chi_M \cdot \gamma_M \mid M \in \mathcal{M}\} \cup \{\chi_{\{n\}} \mid n \in \mathbb{N}\}$. Lemma. Suppose Γ is cofinal in $\operatorname{Inc}(\mathbb{N}, \mathbb{N})$, the set of strictly-increasing sequences. For any $u \in (\mathbb{R}_{>0})^{\mathbb{N}}$, there is $\gamma \in \Gamma$ such that $u \cdot \gamma$ is unbounded.

Proof. Given u, pick $w \in \mathbb{R}^{\mathbb{N}}$ such that $w \leq u$ and $1/w \in Inc(\mathbb{N}, \mathbb{N})$. Pick $\gamma \in \Gamma$ such that $\gamma \geq (1/w)^2$. Then, $u \cdot \gamma \geq u \cdot (1/w)^2 \geq 1/w$.

Corollary. Suppose $\{\gamma_M \mid M \in \mathcal{M}\}$ is contained in and cofinal in $Inc(\mathbb{N}, \mathbb{N})$. For any $u \in (\mathbb{R}_{>0})^{\mathbb{N}}$, $u \in (\mathcal{M}, \gamma)$ contains an unbounded sequence.

Fact. There is \mathcal{M} such that $M_0 \cap M_1$ finite for all distinct $M_0, M_1 \in \mathcal{M}$, and $|\mathcal{M}| = c$. For example, each of the *c* branches in the infinite binary tree whose first few levels are shown below contains an infinite subset of \mathbb{N} , and any two branches have finite intersection:

For \mathcal{M} as in the Fact, it can be shown that $G(\mathcal{M}, \gamma)$ is hyperarchimedean. If in addition, γ is as in the corollary, then $G(\mathcal{M}, \gamma)$ is not contained in a unital hyperarchimedean ℓ -group. Thus, there is a hyperarchimedean ℓ -group without unit that cannot be embedded in an hyperarchimedean ℓ -group with unit (as Conrad and Martinez showed).

References: "Conrad-Martinez-1990.pdf", "Hager-Johnson-2010.pdf"

Order $\mathbb{R}^{\mathbb{N}}$ pointwise.

Fact. Inc(\mathbb{N} , \mathbb{N}) is cofinal in $\mathbb{R}^{\mathbb{N}}$. *Proof.* For $f \in \mathbb{R}^{\mathbb{N}}$, define $\llbracket f \rrbracket \in \mathbb{R}^{\mathbb{N}}$ by $\llbracket f \rrbracket(n) := \bigvee_{i=0}^{n} [f(i)]$. **Fact.** Suppose $u \in (\mathbb{R}_{>0})^{\mathbb{N}}$. If *C* is cofinal in $\mathbb{R}^{\mathbb{N}}$, then so is *uC*. *Proof.* Let $g \in \mathbb{R}^{\mathbb{N}}$. Pick $c \in C$ such that $g/u \leq c$. Then $g \leq uc$.

> 4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 少 9 (で 12/13

Representing the Conrad-Martinez-Hager-Johnson *l*-groups

Suppose

- $\mathcal{M} \subseteq \mathcal{P}\mathbb{N}$ such that $L \cap M$ is finite for all distinct $L, M \in \mathcal{M}$, and
- $\gamma: M \mapsto \gamma_M: M \to \mathsf{Inc}(\mathbb{N}, \mathbb{N})$ has cofinal image.

Let ${\mathcal G}:={\mathcal G}({\mathcal M},\gamma)$ be the sub- ℓ -group of ${\mathbb R}^{\mathbb N}$ generated by

$$\{g_M := \chi_M \cdot \gamma_M \mid M \in \mathcal{M}\} \cup \{\chi_{\{n\}} \mid n \in \mathbb{N}\}.$$

Lemma. Each element $g \in G$ can be expressed in the form $g = h + \sum_{B \in \mathcal{B}} b_B g_B$, where h has finite support, $\mathcal{B} \subseteq \mathcal{M}$ is finite, and $b_B \in \mathbb{Z} \setminus \{0\}$. If $h + \sum_{B \in \mathcal{B}} b_B g_B = h' + \sum_{B \in \mathcal{B}'} b'_B g_B$, then $\mathcal{B} = \mathcal{B}'$ and $b_B = b'_B$ for all $B \in \mathcal{B}$.

Suppose $\mathcal{B} \subseteq \mathcal{M}$ is finite. Let $N(\mathcal{B}) := \max \bigcup \{ L \cap M \mid L \neq M, L, M \in \mathcal{B} \}$. Define $g_{\mathcal{B}}$ by

$$g_{\mathcal{B}}(i) = \begin{cases} 1, & \text{if } i \leq \mathcal{N}(\mathcal{B}); \\ \gamma_{\mathcal{M}}(i), & \text{if } i > \mathcal{N}(\mathcal{B}) \text{ and } i \in \mathcal{M}. \end{cases}$$

Fact. { $y(g_{\mathcal{B}}) \mid \mathcal{B}$ a finite subset of \mathcal{M} } is cofinal in \mathcal{YG} .

Fact. $\mathcal{Y}(G, g_{\mathcal{B}})$ is homeomorphic the disjoint union of $\{n \in \mathbb{N} \mid n \leq N(\mathcal{B})\}$ and the sets $\overline{B}, B \in \mathcal{B}$, where

$$\overline{B} := \{ b \in B \mid b > N(\mathcal{B}) \} \cup \{ p_B \}$$

is the one-point compactification of { $b \in B \mid b > N(B)$ }.

Fact. For $i \in [0, n(\mathcal{B})] \cup \bigcup \mathcal{B}$,

$$\Phi(g, g_{\mathcal{B}})(i) = \begin{cases} g(i), & \text{if } i \leq N(\mathcal{B});\\ g(i)/\gamma_B(i), & \text{if } i > N(\mathcal{B}) \text{ and } i \in B; \end{cases}$$

<ロト < 部ト < 差ト < 差ト 差 の Q () 13/13