A Course on the Yosida Theorem
 Classical \& Pointfree Versions \& Applications
 James J. Madden, Louisiana State University

Summer 2020

Lecture 11
 Categories of Representations

Tuesday, August 18, 2020

Review: Localic Yosida

Suppose A is an archimedean ℓ-group, and $e \in A^{+}$.
(i) Let $y: A^{+} \rightarrow \mathcal{Y} A$ be the set map universal for the following relations $\left(a, b \in A^{+}\right)$:

$$
\begin{aligned}
& \left(I_{1}\right) y(0)=\perp, \\
& \left(I_{2}\right) y(a \wedge b)=y(a) \wedge y(b), \\
& \left(I_{3}\right) y(a+b)=y(a) \vee y(b), \\
& \left(I_{4}\right) y(a \vee b)=y(a) \vee y(b) . \\
& (Y) \text { if }\left\{a_{i}\right\}_{i=0}^{\infty} \subseteq A^{+} \text {and } a_{i} \uparrow_{b} a, \text { then } y(a)=\bigvee_{i=1}^{\infty} y\left(a_{i}\right) .
\end{aligned}
$$

Then $\mathcal{Y} A$ is order-isomorphic to the augmentation of the frame of archimedean kernels of A.
(ii) Let $y_{e}: A^{+} \rightarrow \mathcal{Y}_{e} A$ be the quotient of $\mathcal{Y} A$ obtained by adding the relation:

$$
\left(U_{e}\right) y_{e}(e)=T \text {. }
$$

Then $\mathcal{Y}_{e} A$ regular Lindelöf.
(iii) Let $\Phi_{e}: A \rightarrow \mathcal{R} \mathcal{Y}_{e} A$ be defined by

$$
\Phi_{e}(a)(p, q)=y_{e}\left((a-p e)^{+} \wedge(q e-a)^{+}\right), \quad p, q \in \mathbb{Q} .
$$

Then Φ_{e} is an ℓ-homomorphism with kernel e^{\perp}.

Funtoriality of \mathcal{Y}

Suppose $\beta: A \rightarrow B$ is an ℓ-homomorphism of archimedean ℓ-groups.

- There is a frame morphism $\mathcal{Y}(\beta): \mathcal{Y}(A) \rightarrow \mathcal{Y}(B) ; y(a) \mapsto y(\beta a)$.
- For any $e \in A^{+}$, there is $\mathcal{Y}_{e}(\beta)$ making the following diagram commute:

$$
\begin{array}{cc}
\mathcal{Y}(A) \xrightarrow{\mathcal{Y}(\beta)} & \mathcal{Y}(B) \\
\text {-^y(e) }^{\mathcal{A}} \downarrow \\
\mathcal{Y}_{e}(A) \xrightarrow{\mathcal{Y}_{e}(\beta)} \mathcal{Y}_{\beta e}(B)
\end{array}
$$

(Here, we identify $\mathcal{Y}_{e} A$ with $[\perp, y(e)] \subseteq \mathcal{Y} A$.)

- For any $e \in A^{+}$and $a \in A, \Phi_{\beta e}(\beta a)=\mathcal{Y}_{e}(\beta) \circ \Phi_{e}(a)$:

Review: Change of Unit

The image of A under the map Φ_{e} is denoted by $\Phi(A, e)$. By definition, there is a containment $\Phi(A, e) \subseteq \mathcal{R} \mathcal{Y}(A, e)$. Both these ℓ-groups are canonically W-objects: the unit in $\mathcal{R} \mathcal{Y}(A, e)$ is the (localic) constant function 1 , which is $\Phi_{e}(e)$. Thus, the containment is a \mathbf{W}-morphism.
We have seen that if $y(f) \leqslant y(e)$, then there is a frame map $\pi_{f}^{e}: \mathcal{Y}(A, e) \rightarrow \mathcal{Y}(A, f)$ and an ℓ-homomorphism (actually, an ℓ-orthomorphism):

$$
\begin{aligned}
\rho_{f}^{e}: \Phi(A, e) & \rightarrow \Phi(A, f) \\
\rho_{f}^{e}(\phi) & =\Phi_{f}(e) \cdot\left(\pi_{f}^{e} \circ \phi\right) .
\end{aligned}
$$

This map is "localic restriction," followed by multiplication by $\Phi_{f}(e)$. It is a surjection, and hence a \mathbf{W}-morphism if we take $\pi_{f}^{e} \circ \Phi_{e}(e)$ as the weak unit of $\Phi(A, f)$. But $\pi_{f}^{e} \circ \Phi_{e}(e)$ is not in general equal to $\Phi_{f}(f)$, the canonical choice of weak unit in $\Phi(A, f)$. Last lecture, we proved:

Change of Unit Proposition. $\rho_{f}^{e}\left(\Phi_{e}(a)\right)=\Phi_{f}(a)$.
Example ($7^{\text {th }}$-grade proportional reasoning). Suppose A is the set of real-valued functions on the 2-point space. We write (c, d) to mean the function that has value c at the first point and d at the second. Let $e:=(3,4)$ and $f:=(2,0)$. Then $\Phi_{e}(c, d)=(c / 3, d / 4)$ and $\Phi_{f}(c, d)=(c / 2)$.

$$
\rho_{f}^{e}\left(\Phi_{e}(c, d)\right)=\Phi_{f}(e) \cdot\left(\pi_{f}^{e} \circ(c / 3, d / 4)\right)=(3 / 2) \cdot(c / 3)=(c / 2)=\Phi_{f}(c, d) .
$$

Comment. The Yosida theorem produces, for each $e \in A$, a representation $\Phi(A, e) \subseteq \mathcal{Y}(A, e)$. The discussion above tells us how the different representations, as we let e vary, relate to one another.

The Category RL

Definition. RL denotes the category described as follows:

(a) RL-objects are pairs (\mathcal{O}, A), where:
(i) \mathcal{O} is a regular Lindelöf frame, and
(ii) A is a sub- ℓ-group of $\mathcal{R O}$ that contains 1 and is such that $\mathcal{Y}(A, 1) \cong \mathcal{O}$ (equivalently, $\left\{y_{1}(a) \mid a \in A\right\}$ generates \mathcal{O} as a frame).
(b) An RL-morphism $\beta:(\mathcal{E}, A) \rightarrow(\mathcal{F}, B)$ is a pair consisting of:
(i) a frame morphism $\pi: \mathcal{E} \rightarrow \mathcal{F}$, and
(ii) a proper unit $u \in \mathcal{R} \mathcal{F}$ such that $u \cdot(\pi \circ a) \in B$, for all $a \in A$.

Motivation. The name "RL" is intended to suggest the phrase "represented ℓ-group." The motivation here is create a means to record systematically all the data in all the possible morphisms $\Phi_{e}: A \rightarrow \mathcal{R} \mathcal{Y}(a, e)$, as e varies over A^{+}.

Notation. $\mathcal{R} \mathcal{O}$ contains the constant function 1 as a distinguished weak unit. If a sub- ℓ-group $A \subseteq \mathcal{R} \mathcal{O}$ contains 1 and we want to draw attention to the fact that we are viewing 1 as an element of A, we write 1_{A} to denote it. If A is simply an abstract archimedean ℓ-group, then the notation 1_{A} is meaningless, but if A contains a weak unit e, then $1_{\Phi_{e}(A)}=\Phi_{e}(e) \in \Phi_{e}(A)$.
Definition. Suppose $1, e \in A^{+} \subseteq \mathcal{R} \mathcal{O}$. We call e a proper unit if $y(e)=y(1)$.
Comment. Suppose $e, f \in A^{+}$. Even when both e and f are weak units (i.e., $e^{\perp}=\{0\}=f^{\perp}$), it may not be the case that $y(e)=y(f)$. In particular, when $A \subseteq \mathcal{R} \mathcal{O}$, there may be elements $a \in A$ such that $y(1)<y(a)$. We had an example of this previously: Represent $A=P L([0,1])$ using x (the identity function from $[0,1]$ to \mathbb{R}) as the weak unit. Then $\mathcal{Y}(A, x)=(0,1]$. However, $1 / x \in \mathcal{R} \mathcal{Y}(A, x)$ generates an archimedean kernel that is properly larger than $y(1)$. Observe that, $\Phi_{x}(x)=1$, and $\Phi_{x}(1)=1 / x$.

Comment. Given $a: \mathcal{R} \rightarrow \mathcal{E}$ with $a \in A$ and unit $u \in \mathcal{R} \mathcal{F}$, it is of course the case that $u \cdot(\pi \circ a) \in \mathcal{R} \mathcal{F}$. The definition of RL demands more: $u \cdot(\pi \circ$ a) must be in B. The data in the definition implies the existence of an ℓ-homomorphism $\rho: A \rightarrow B$ defined by $\rho(a)=u \cdot(\pi \circ a)$. We may refer to an RL-morphism by the data (π, ρ), rather than (π, u). In general, $\rho\left(1_{A}\right)$ will not be equal to 1_{B}.

Research Problem. Does RL have limits (fiber products)? We can from limits of abelian ℓ-groups and limits of of regular Lindelöf locales; see Slide 10, below. But can we do so in a way that respects the rest of the structure in RL?

RL-presheaves

Let \mathbf{C} be a category. An RL-presheaf on \mathbf{C} is a functor $\boldsymbol{\Phi}$ from $\mathbf{C}^{o p}$ to $\mathbf{R L}$.

Notation. $\boldsymbol{\Phi}$ is the following data:

- For each $X \in \mathbf{C}, \boldsymbol{\Phi}(X)=\left(\mathcal{O}_{X}, A_{X}\right)$.
- For each $f: X \rightarrow Y \in \mathbf{C}$, an RL-morphism

$$
\boldsymbol{\Phi}(f)=\left(\pi_{f}: \mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}, \rho_{f}: A_{Y} \rightarrow A_{X}\right)
$$

This assignment must of course preserve identity and composition.

Definition. Let $\left[A^{+}\right]$denote the category whose objects are the elements of A^{+}, where the set hom (e, f) has a single element, denoted $f \leq e$, if $y(f) \leqslant y(e)$ and is empty otherwise.

Fact. $\pi_{e}^{e}=\operatorname{id}_{\mathcal{Y}(A, e)}$ and $\rho_{e}^{e}=\operatorname{id}_{\Phi(A, e)}$.
Fact. Suppose $g \leq f \leq e$. Then $\pi_{g}^{f} \pi_{f}^{e}=\pi_{g}^{e}$ and $\rho_{g}^{f} \rho_{f}^{e}=\rho_{g}^{e}$.

Representation Presheaves

Definition. Suppose A is an archimedean ℓ-group and E is a full subcategory of $\left[A^{+}\right]$. Then, the representation presheaf for A over E is the (contravariant) functor $\boldsymbol{\Phi}$ from E to $\mathbf{R L}_{1}$ defined (for $e, f \in E$) by:
(i) $\boldsymbol{\Phi}(e):=(\mathcal{Y}(A, e), \Phi(A, e))$, and
(ii) $\boldsymbol{\Phi}(f \leq e):=\left(\pi_{f}^{e}, \rho_{f}^{e}\right)$.

As mentioned previously, we may regard $\Phi(a, e) \in \mathcal{R} \mathcal{Y}(a, e)$ as the "formal ratio of a to e." Then $\boldsymbol{\Phi}$ is an assemblage of data displaying all the formal ratios that can be formed with denominators in E and the relationships between them.

If it is necessary to keep track of the data defining $\boldsymbol{\Phi}$, we may write $\boldsymbol{\Phi}_{E}$, or for even more detail, $\boldsymbol{\Phi}_{(A, E)}$.

Natural Transformations of Representation Presheaves

Reminder: (i) $\boldsymbol{\Phi}_{E}(e):=(\mathcal{Y}(A, e), \Phi(A, e))$, and $(i i) \boldsymbol{\Phi}_{E}(f \leq e):=\left(\pi_{f}^{e}, \rho_{f}^{e}\right)$.
Suppose $\beta: A \rightarrow B$ is an Arch-morphism and $E \subseteq\left[A^{+}\right]$. If $y(a) \leqslant y\left(a^{\prime}\right)$, then $y(\beta a) \leqslant y\left(\beta a^{\prime}\right)$. Thus, β is a functor from E to βE.

Note that $\boldsymbol{\Phi}_{(B, \beta E)}$ can be regarded as a composition of functors: $\boldsymbol{\Phi} \circ \beta$.
There is a natural transformation $\hat{\beta}$ from $\boldsymbol{\Phi}_{(A, E)}$ to $\boldsymbol{\Phi}_{(B, \beta E)}$ whose component at $e \in E$ is defined as follows:

$$
\begin{aligned}
& \hat{\beta}_{e}:=\left(\mathcal{Y}(\beta, e), \mathcal{Y}(\beta, e) \circ_{_}\right):(\mathcal{Y}(A, e), \Phi(A, e)) \rightarrow(\mathcal{Y}(B, \beta e), \Phi(B, \beta e)) . \\
& \begin{array}{ccc}
e & \boldsymbol{\Phi}_{(A, E)}(e) \xrightarrow{\hat{\beta}_{e}} & \boldsymbol{\Phi}_{(B, \beta E)}(\beta e) \\
\leq & \boldsymbol{\Phi}_{(A, E)}(f \leq e) \downarrow & \\
f & \boldsymbol{\Phi}_{(A, E)}(f) \xrightarrow{\hat{\beta}_{f}} & \downarrow_{(B, \beta E)}(\beta f \leq \beta e) \\
& \boldsymbol{\Phi}_{(B, \beta E)}(\beta f)
\end{array}
\end{aligned}
$$

Recovering A

We return to the Research Question form Slide 6.
Consider a presheaf $\boldsymbol{\Phi}_{(A, E)}$.

- The maps $\rho_{f}^{e}: \Phi(A, e) \rightarrow \Phi(A, f)$ for all $e, f \in E, f \leq e$ form a diagram in Arch. For each $e \in E$, there is a surjective Arch-morphism $\Phi_{e}: A \rightarrow \Phi(A, e)$. If E is cofinal in A^{+}, then for any $a \in A$, there is $e \in E$ such that $y(a) \leqslant y(e)$. It follows that A, together with the maps Φ_{e}, form the limit of the ρ-diagram.
- Similarly, the maps $\pi_{f}^{e}: \mathcal{Y}(A, e) \rightarrow \mathcal{Y}(A, f)$ for all $e, f \in E, f \leq e$ form a diagram in RegLin. We conjecture that this too has a limit. We do not know if $\mathcal{Y} A$ is regular, but if it is, then the limit would be the Lindelöfification $\lambda \mathcal{Y} A$ of $\mathcal{Y} A$.
- Question. Is there (always) an embedding $\Phi: A \rightarrow \mathcal{R} \lambda \mathcal{Y} A$ and a collection of "scaled restriction maps" $\rho_{e}: \Phi A \rightarrow \Phi(A, e)$?

An Example of Conrad-Martinez (simplified by Hager-Johnson)

Let \mathcal{M} be a family of infinite subsets of \mathbb{N}. For each $M \in \mathcal{M}$, let $\gamma_{M} \in \mathbb{R}^{\mathbb{N}}$. Then, $G(\mathcal{M}, \gamma)$ denotes the sub- ℓ-group of $\mathbb{R}^{\mathbb{N}}$ generated by $\left\{\chi_{M} \cdot \gamma_{M} \mid M \in \mathcal{M}\right\} \cup\left\{\chi_{\{n\}} \mid n \in \mathbb{N}\right\}$.
Lemma. Suppose Γ is cofinal in $\operatorname{Inc}(\mathbb{N}, \mathbb{N})$, the set of strictly-increasing sequences. For any $u \in\left(\mathbb{R}_{>0}\right)^{\mathbb{N}}$, there is $\gamma \in \Gamma$ such that $u \cdot \gamma$ is unbounded.
Proof. Given u, pick $w \in \mathbb{R}^{\mathbb{N}}$ such that $w \leqslant u$ and $1 / w \in \operatorname{lnc}(\mathbb{N}, \mathbb{N})$. Pick $\gamma \in \Gamma$ such that $\gamma \geqslant(1 / w)^{2}$. Then, $u \cdot \gamma \geqslant u \cdot(1 / w)^{2} \geqslant 1 / w$.
Corollary. Suppose $\left\{\gamma_{M} \mid M \in \mathcal{M}\right\}$ is contained in and cofinal in $\operatorname{lnc}(\mathbb{N}, \mathbb{N})$. For any $u \in\left(\mathbb{R}_{>0}\right)^{\mathbb{N}}$, $u G(\mathcal{M}, \gamma)$ contains an unbounded sequence.
Fact. There is \mathcal{M} such that $M_{0} \cap M_{1}$ finite for all distinct $M_{0}, M_{1} \in \mathcal{M}$, and $|\mathcal{M}|=c$. For example, each of the c branches in the infinite binary tree whose first few levels are shown below contains an infinite subset of \mathbb{N}, and any two branches have finite intersection:

For \mathcal{M} as in the Fact, it can be shown that $G(\mathcal{M}, \gamma)$ is hyperarchimedean. If in addition, γ is as in the corollary, then $G(\mathcal{M}, \gamma)$ is not contained in a unital hyperarchimedean ℓ-group. Thus, there is a hyperarchimedean ℓ-group without unit that cannot be embedded in an hyperarchimedean ℓ-group with unit (as Conrad and Martinez showed).

References: "Conrad-Martinez-1990.pdf", "Hager-Johnson-2010.pdf"

Notes on previous slide

Order $\mathbb{R}^{\mathbb{N}}$ pointwise.
Fact. $\operatorname{lnc}(\mathbb{N}, \mathbb{N})$ is cofinal in $\mathbb{R}^{\mathbb{N}}$.
Proof. For $f \in \mathbb{R}^{\mathbb{N}}$, define $\llbracket f \| \in \mathbb{R}^{\mathbb{N}}$ by $\llbracket f \|(n):=\bigvee_{i=0}^{n}[f(i)\rceil$.
Fact. Suppose $u \in\left(\mathbb{R}_{>0}\right)^{\mathbb{N}}$. If C is cofinal in $\mathbb{R}^{\mathbb{N}}$, then so is $u C$.
Proof. Let $g \in \mathbb{R}^{\mathbb{N}}$. Pick $c \in C$ such that $g / u \leqslant c$. Then $g \leqslant u c$.

Representing the Conrad-Martinez-Hager-Johnson ℓ-groups

Suppose

- $\mathcal{M} \subseteq \mathcal{P} \mathbb{N}$ such that $L \cap M$ is finite for all distinct $L, M \in \mathcal{M}$, and
- $\gamma: M \mapsto \gamma_{M}: M \rightarrow \operatorname{Inc}(\mathbb{N}, \mathbb{N})$ has cofinal image.

Let $G:=G(\mathcal{M}, \gamma)$ be the sub- ℓ-group of $\mathbb{R}^{\mathbb{N}}$ generated by

$$
\left\{g_{M}:=\chi_{M} \cdot \gamma_{M} \mid M \in \mathcal{M}\right\} \cup\left\{\chi_{\{n\}} \mid n \in \mathbb{N}\right\} .
$$

Lemma. Each element $g \in G$ can be expressed in the form $g=h+\sum_{B \in \mathcal{B}} b_{B} g_{B}$, where h has finite support, $\mathcal{B} \subseteq \mathcal{M}$ is finite, and $b_{B} \in \mathbb{Z} \backslash\{0\}$. If $h+\sum_{B \in \mathcal{B}} b_{B} g_{B}=h^{\prime}+\sum_{B \in \mathcal{B}^{\prime}} b_{B}^{\prime} g_{B}$, then $\mathcal{B}=\mathcal{B}^{\prime}$ and $b_{B}=b_{B}^{\prime}$ for all $B \in \mathcal{B}$.

Suppose $\mathcal{B} \subseteq \mathcal{M}$ is finite. Let $N(\mathcal{B}):=\max \bigcup\{L \cap M \mid L \neq M, L, M \in \mathcal{B}\}$. Define $g_{\mathcal{B}}$ by

$$
g_{\mathcal{B}}(i)= \begin{cases}1, & \text { if } i \leqslant N(\mathcal{B}) ; \\ \gamma_{M}(i), & \text { if } i>N(\mathcal{B}) \text { and } i \in M .\end{cases}
$$

Fact. $\left\{y\left(g_{\mathcal{B}}\right) \mid \mathcal{B}\right.$ a finite subset of $\left.\mathcal{M}\right\}$ is cofinal in $\mathcal{Y} G$.
Fact. $\mathcal{Y}\left(G, g_{\mathcal{B}}\right)$ is homeomorphic the disjoint union of $\{n \in \mathbb{N} \mid n \leqslant N(\mathcal{B})\}$ and the sets $\bar{B}, B \in \mathcal{B}$, where

$$
\bar{B}:=\{b \in B \mid b>N(\mathcal{B})\} \cup\left\{p_{B}\right\}
$$

is the one-point compactification of $\{b \in B \mid b>N(\mathcal{B})\}$.
Fact. For $i \in[0, n(\mathcal{B})] \cup \bigcup \mathcal{B}$,

$$
\Phi\left(g, g_{\mathcal{B}}\right)(i)= \begin{cases}g(i), & \text { if } i \leqslant N(\mathcal{B}) ; \\ g(i) / \gamma_{B}(i), & \text { if } i>N(\mathcal{B}) \text { and } i \in B ;\end{cases}
$$

