A Course on the Yosida Theorem Classical & Pointfree Versions & Applications

James J. Madden, Louisiana State University

Summer 2020

イロン イボン イヨン トヨ

1/11

Lecture 3. The Yosida Representation

Tuesday, June 23, 2020

Recall

Throughout, *A* is an abelian ℓ -group and $a \in A^+$.

Y(A, a) is the set of all ℓ -ideals of A that are maximal missing a, with the topology generated by all $coz_a b$, $b \in A$, where

$$\operatorname{coz}_{a} b := \{ M \in Y(A, a) \mid b \notin M \}.$$

Thm. Y(A, a) is compact and Hausdorff.

Lem. If $X \subseteq Y(A, a)$, $cl X = \{ M \mid \bigcap X \subseteq M \}$. $\widehat{b}_a : Y(A, a) \to \mathbb{R} \cup \{ \pm \infty \}$ If $b \in A^+$, $\widehat{b}_a(M) = \sup\{ m/n \mid ma + M \le nb + M, m, n \in \mathbb{N}, n \neq 0 \}$. Prop. \widehat{b}_a is continuous, for all $b \in A$.

$$\operatorname{fin}_{a} b := \{ M \in Y(A, a) \mid b \in \langle M, a \rangle \} = (\widehat{b}_{a})^{-1}(\mathbb{R})$$

Further comments

(1) Note that all the definitions on the previous page make sense even when A is not archimedean.

(2) The function

$$\widehat{(\)}_{a}:b\mapsto \widehat{b}_{a}:A\to (\mathbb{R}\cup\{\pm\infty\})^{Y(A,a)}$$

preserves \lor and -:

$$\widehat{(b \lor c)}_a = \widehat{b}_a \lor \widehat{c}_a;$$

 $\widehat{(-b)}_a = -(\widehat{b}_a).$

However, $\infty + (-\infty)$ is not defined, so $\widehat{b}_a + \widehat{c}_a$ may not be meaningful.

(3) When A is archimedean, the problem in (2) can be avoided, as we now show.

Maximal *l*-ideals in Archimedean case

Definition. For $a \in A$, $a^{\perp} := \{ b \in A \mid 0 = |a| \land |b| \}$. We say a is a *weak unit* if $0 \le a$ and $a^{\perp} = \{0\}$.

Theorem. Suppose A is archimedean, $a, b \in A$ and $0 \le a \le b$. Then a^{\perp} is the intersection of the values M of a such that $b \in M^*$.

Corollary. If A is archimedean, then a^{\perp} is the intersection of the values of a, and fin_u b is dense in Y(A, a) for all $b \in A$.

Proof. If $a \notin M$ then $a^{\perp} \subseteq M$, so $a^{\perp} \subseteq \bigcap Val(A, a)$. To prove the opposite inclusion, suppose $0 \le x \notin a^{\perp}$. Then, $0 < x \land a$. Let $d := x \land a$. Note that $d \le b$. Since A is archimedean and 0 < d, we may—and do— pick $n \in \mathbb{N}$ such that $n \notin d \le b$. Let

$$h := b - (n d \wedge b)$$
, and $g := n d - (n d \wedge b)$.

Note that $g \wedge h = 0$. Pick *P* maximal missing *g*. Since *P* is prime, $h \in P$. Also, *P* does not contain *b* (otherwise, it would contain *g*, because $0 < nd \le nb$ and $(nd \wedge b) \le b$). Enlarge *P* to a value *M* of *b*. Since $b \notin M$ but $h \in M$, $nd \wedge b \notin M$, so $d \notin M$, so neither *x* nor *a* is in *M*. Clearly $a \in \langle M, b \rangle = M^*$, so *M* is a value of *a*.

Aside: an observation

Let us define a new operation $a \parallel b := a - (a \land b)$. Note that $(a \parallel b) \land (b \parallel a) = 0$.

This operation has appeared previously in several contexts:

►
$$a \setminus 0 = a - (a \land 0) = a + (-a \lor 0) = a^+$$

•
$$0 \ \ a = 0 - (0 \land a) = 0 + (0 \lor -a) = a^{-1}$$

- In proving Y(A, a) Hausdorff (to find disjoint cozero nbhds)
- ▶ In proving the last theorem, we used $b \mid nd$ and $nd \mid b$.

Extended-real-valued functions and D(X)

Definition. Let X be a completely regular topological space. Then D(X) denotes the set of continuous $\mathbb{R} \cup \{\pm \infty\}$ -valued functions f on X such that $f^{-1}(\mathbb{R})$ is dense.

If $f, g \in D(X)$, then f + g is defined and real-valued on $U := f^{-1}(\mathbb{R}) \cap g^{-1}(\mathbb{R})$. *U* is dense and open in *X*, but $f|_U + g|_U$ might not be the restriction to *U* of an element of D(X). If there is $h \in D(X)$ such that $h|_U = f|_U + g|_U$, it is unique (since *U* is dense) and we say that f + g is defined.

Suppose *B* is a subset of D(X). If *B* contains 0 and is closed under – and \lor , and for all $f, g \in B$, f + g is defined, then *B* is an archimedean ℓ -group. In this case, we say *B* is an ℓ -group of continuous extended-real-valued functions on *X*, and we write $B \subseteq_{\ell} D(X)$.

The Yosida Theorem, Part 1

Theorem. Suppose A is an archimedean ℓ -group and $a \in A^+$. Then

(iv) $\hat{a}_a =$ the constant function 1 on Y(A, a).

Proof. (i) follows from the Theorem on slide 5. Ad (ii), if $b, c \in A$, then $\widehat{b}_a(M) + \widehat{c}_a(M) = (\widehat{b+c})_a(M)$ for all M in a dense subset of Y(A, a). Ad (iii), the map preserves the operations "on a dense subset of Y(A, a);" that a^{\perp} is the kernel follows from the Theorem on slide 5. (iv) follows from the definitions.

The Yosida Theorem, Part 2: Functoriality

Theorem. Suppose $\phi : A \to A'$ is an ℓ -homomorphism, $a \in A$, and $a' = \phi(a) \in A'$. Let $Y(\phi) : Y(A', a') \to X(A)$ (= the set of ℓ -prime ℓ -ideals of A) be defined by $Y(\phi)(M) := \phi^{-1}(M)$. Then: (*i*) If $M \in Y(A', a')$, then $Y(\phi)(M) \in Y(A, a)$; (*ii*) $Y(\phi)$ is continuous; (*iii*) For all $g \in A$, $\widehat{\phi(g)}_{a'} = \widehat{g}_{a'} \circ Y(\phi)$.

Proof. Exercise.

The Yosida Theorem, Part 3: Idempotence

Theorem. Suppose X is a compact Hausdorff space and $A \subseteq_{\ell} D(X)$ is an ℓ -group of continuous extended-real-valued functions on X containing the constant function 1. Suppose further that for any two distinct points $x, y \in X$, there are $f, g \in A^+$ such that f(x) = 0 = g(y) and $f(y) \neq 0 \neq g(x)$. For each $x \in X$, let $\mu(x) := \{ a \in A \mid a(x) = 0 \}$. Then $\mu : X \to Y(A, 1)$ is a homeomorphism, and $b \mapsto \widehat{b}_1$ is an ℓ -isomorphism of A with \widehat{A}_1 .

The proof is a series of exercises:

- 1. For any two points distinct $x, y \in X$, there are $a, b \in A$ such that $x \in \cos a, y \in \cos b$ and $\cos a \cap \cos b = \emptyset$.
- 2. For each $x \in X$, $\{ \operatorname{coz} a \mid a \in A^+ \& a(x) \neq 0 \}$ is a neighborhood base at x.
- 3. μ is surjective.
- 4. μ is injective.
- 5. μ is a homeomorphism.
- 6. $\hat{b}_1 = 0$ iff b = 0.

A research problem: Change of unit.

Suppose $a, b \in A$ and $0 \le a \le b$.

• What is the relationship between Y(A, a) and Y(A, b)?

- Between the representation maps $\widehat{()}_a$ and $\widehat{()}_b$?
- What stronger statements are true when A is archimedean? When a and b are weak order units?