A Course on the Yosida Theorem Classical & Pointfree Versions & Applications

James J. Madden, Louisiana State University

Summer 2020

イロン イボン イヨン トヨ

1/14

Lecture 4. Applications: Archimedean *l*-Groups with Strong Unit Monoreflections

Tuesday, June 30, 2020

The Yosida Representation (review of last lecture)

An important and influential reference for the material in Lectures 2 & 3 (and more) is:

Hager A W & Robertson L C, Representing and ringifying a Riesz space, *Symposia Mathematica* 21 (1975), 411 – 431.

A copy is in the Dropbox folder ("Hager-Robertson-1975.pdf")

In the present lecture, we will review the Yosida Representation, and then apply it to the category \mathbf{W}^* of archimedean ℓ -groups with strong unit. A major goal of much research over the past several decades has been to generalize results concerning \mathbf{W}^* to the categories \mathbf{W} (archimedean ℓ -groups with weak unit) and **Arch** (archimedean ℓ -groups in general). In this lecture, we will present some of the \mathbf{W}^* prototype theorems.

Suppose A is an archimedean ℓ -group with weak unit u. Then there is a compact Hausdorff space Y(A, u) and an ℓ -isomorphism:

$$\widehat{()}_u: A \to \widehat{A}_u \subseteq D(Y(A, u)),$$

where \widehat{A}_u is a point-separating^{*} ℓ -group of continuous extended-real-valued functions on Y(A, u) and $\widehat{u}_u = 1$.

* We say a set A of functions in D(X) is point-separating if for any $x_0, x_1 \in X$, there is $a \in A$ such that $a(x_0) = 0$ and $a(x_1) \neq 0$.

Suppose *B* is an archimedean ℓ -group with weak unit *v*, and $\phi : A \to B$ is an ℓ -group morphism with $\phi(u) = v$.

Then there is a continuous map: $Y(\phi) : Y(B, v) \to Y(A, u)$ such that

$$\widehat{\phi(a)}_{v} = \widehat{a}_{u} \circ Y(\phi).$$

Suppose A is a point-separating ℓ -group of continuous extended-real-valued functions on a compact Hausdorff space X, and $1 \in A$.

Then $x \mapsto M_x := \{ a \in A \mid a(x) = 0 \}$ is a homeomorphism of X with Y(A, 1), and $\widehat{a}_1(M_x) = a(x)$ for all $a \in A$.

The Categories ${f W}$ and $\widehat{f W}$

Objects of **W**: Pairs (A, u), A an archimedean ℓ -group; $u \in A$ a weak unit.

Morphisms of **W**: ℓ -group morphisms $\phi : (A, u) \to (A', u')$, with $\phi(u) = u'$.

Objects of $\widehat{\mathbf{W}}$: Pairs (A, X), where X is a compact Hausdorff space and A is a point-separating ℓ -group of continuous extended-real-valued functions on X containing 1.

Morphisms of $\widehat{\mathbf{W}}$: A morphism from (A, X) to (A', X') is a continuous map $\Phi : X' \to X$ such that for all $a \in A$, $a \circ \Phi \in A'$. This implies in particular that $\Phi^{-1}(a^{-1}(+\infty))$ must be nowhere dense in X' for all $a \in A$; see (Hager Robertson 1975, Remark 2.13). A, as an algebra of functions on X, endows X with a geometric structure. The condition $a \circ \Phi \in A'$ is a demand that Φ preserve this structure. This is an embryonic version of idea underlying the idea of a "structure sheaf" — a topic that we will explore in detail later.

Yosida Theorem: Categorical Interpretation

The Yosida Theorem says that the categories W and \widehat{W} are equivalent, via the functor Y, where

$$egin{aligned} \mathbf{Y}(A,u) &:= (\widehat{A}_u, Y(A,u)) \ \mathbf{Y}(\phi) &:= Y(\phi) \end{aligned}$$

Because of this, we need not distinguish between the two categories. Given any $\phi : (A, u) \rightarrow (B, v)$ in **W**, we may assume without any loss of generality that

- A and B are ℓ-groups of continuous extended-real-valued functions on spaces Y(A, u) and Y(B, v) and
- ϕ is induced by a continuous map $f: Y(B, v) \to Y(A, u)$.

Strong Units: the Categories W* and C*

Definition. Let A be an ℓ -group. An element $e \in A$ is called a *strong unit* if $0 \le e$ and for every $a \in A$, there is $n \in \mathbb{N}$ such that $|a| \le n e$.

Definition.

- (*i*) The category \mathbf{W}^* is the full subcategory of \mathbf{W} whose objects are those pairs (A, e) such that e is a strong unit.
- (*ii*) The category C^* is the full subcategory of W^* whose objects are those pairs (A, e) such that $\widehat{A}_e = C^*(Y(A, e))$ (all continuous real-valued functions on Y(A, e)—necessarily bounded, since Y(A, e) is compact).

C* is a monoreflective subcategory of W*

Suppose (A, e) is an object of W^* . Then we have a W^* morphism

$$ho_{\mathcal{A}}: \mathcal{A}
ightarrow
ho \mathcal{A} := \mathcal{C}^*(Y(\mathcal{A}, e)), ext{ where }
ho_{\mathcal{A}}(a) := \widehat{a}_e$$

Comment: We have merely renamed a few things that we've already encountered — ρ_A is the representation morphism $\widehat{()}_e$. We do this to be able say things in a manner that meshes with category theory. In particular, we will show that ρ_A is a reflection map—a concept we will define on the next slide.

Theorem. Let (B, d) be an object of C^* , and let $\phi : (A, e) \to (B, d)$ be a morphism of W^* . Then there is a C^* -morphism $\overline{\phi} : (\rho A, e) \to (B, d)$ such that $\phi = \overline{\phi} \circ \rho_A$.

Proof. Without loss of generality, we may assume $B = C^*(Y(B, d))$. ϕ is induced by a continuous map $f : Y(B, d) \to Y(A, e)$, such that $\widehat{\phi(a)}_d = \widehat{a}_e \circ f$. Let c be any continuous function on Y(A, e). Since $\widehat{c}_e \circ f$ is a continuous, real-valued function on Y(B, d), we have $\widehat{c}_e \circ f \in B$. Thus, we may define $\overline{\phi}$ by $\overline{\phi}(c) = \widehat{c}_e \circ f$, for $c \in \rho A$.

10/14

Reflective subcategories

Definition. Suppose **C** is a category. We say **R** is *reflective* in **C** if:

- **R** is a full, isomorphism- closed subcategory of **C**, and
- ▶ for each object *A* of **C**, there is a morphism $\rho_A : A \to \rho A$ that is universal to **R**, i.e., ρA is in **R** and for any **C**-morphism $\phi : A \to B$ with codomain *B* in **R**, there is a **unique** morphism $\overline{\phi} : \rho A \to B$, with $\phi = \overline{\phi} \circ \rho_A$.

If ρ_A is monic (i.e., left-cancellable) for all A, then **R** is said to be *monoreflective*. Some examples of monoreflective subcategories:

С	Tych. sp.	distr. latt.	torsion-free ab. grps	W *
R	$\operatorname{cpt} T_2$ sp.	bool. latt.	divisible t-f ab. grps	C *

Free objects in W*

Definition. Let $I := [0, 1] \subseteq \mathbb{R}$. Let S be a set. For $\alpha \in S$, let $x_{\alpha} : I^{S} \to I$ be the projection onto the α^{th} factor, and let $F_{\ell}^{*}(S)$ denote the sub- ℓ -group of $C(I^{S})$ generated by $\{x_{\alpha} \mid \alpha \in S\} \cup \{1\}$. Each element of $F_{\ell}^{*}(S)$ is of the form $\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_{i}} f_{ij}$, where $m, n_{i} \in \mathbb{N}$ and each f_{ij} is an integer plus an integer-linear combination of finitely many elements of $\{x_{\alpha} \mid \alpha \in S\} \cup \{1\}$.

Proposition. Suppose $(A, e) \in \mathbf{W}^*$ and $\alpha \mapsto a_\alpha$ is a function from S to A, with $0 \le a_\alpha \le e$ for all $\alpha \in E$. Then, there is a unique ℓ -group morphism $\phi : F_\ell^*(S) \to A$ such that $\phi(1) = e$ and $\phi(x_\alpha) = a_\alpha$ for all $\alpha \in S$.

Proof. For each $\alpha \in S$, $\widehat{a_{\alpha e}} : Y(A, e) \to I$. Consider the map $\Phi : Y(A, e) \to I^S$ whose component at α is $\widehat{a_{\alpha e}}$. For all $f \in F_{\ell}^*(S)$ define $\phi(f) := f \circ \Phi$. Clearly, $x_{\alpha} \circ \Phi = \widehat{a_{\alpha e}}$. Moreover, if $f, g \in F_{\ell}^*(S)$, then $(f \lor g) \circ \Phi = (f \circ \Phi) \lor (g \circ \Phi)$ and $(f + g) \circ \Phi = (f \circ \Phi) + (g \circ \Phi)$, so ϕ is an ℓ -group morphism.

Epimorphisms in \mathbf{W}^*

Definition. A morphism $\epsilon : A \to B$ in a category **C** is said to be **C**-*epi* if for all **C**-morphisms $\phi, \psi : B \to C$, $\phi \circ \epsilon = \psi \circ \epsilon$ implies $\phi = \psi$.

Examples. **Set**-epi = surjective. A morphism $f : A \rightarrow B$ of bounded distributive lattices is epi if every element of *B* is either in f(A) or is the complement of an element of f(A).

Proposition. A **W**^{*}-morphism $\epsilon : (A, a) \to (B, b)$ is epi iff $Y(\epsilon) : Y(B, b) \to Y(A, a)$ is injective.

Proof Sketch. ϵ is **W**^{*}-epi iff $\rho\epsilon$ is **C**^{*}-epi iff $Y(\rho\epsilon)$ is **CptHaus**-mono iff $Y(\rho\epsilon) = Y(\epsilon)$ is injective.

Cor. An object (A, a) of \mathbf{W}^* is *epicomplete* iff it is a $C^*(X)$ for some compact Hausdorff space X.

Some guiding problems suggested by W*

In the lectures that follow, our goal will be to develop the theory needed to address the following:

- ▶ Is there a functorial representation for **Arch**? (Unsolved.)
- What are the free objects in W? (Solved, and easy to represent.) In Arch? (Solved, but not well-understood; seldom applied.)
- What are the epimorphisms in W? In Arch? (Solved by Ball & Hager. Not easy.)
- What are the epi-closed objects in W? In Arch? (Solved for W by Madden & Vermeer using locales. Solved for W and Arch by Ball & Hager without locales. Not easy.)
- What can we say about the monoreflective subcategories of W? (Much is known.) Of Arch? (Important problems are unsolved.)