A Course on the Yosida Theorem Classical & Pointfree Versions & Applications

James J. Madden, Louisiana State University

Summer 2020

イロン イボン イヨン トヨ

1/15

Lecture 5. Frames and Locales Frames by Generators and Relations The spectrum of an *l*-group

Tuesday, July 7, 2020

Semilattices

Definition. A semilattice L is a set equipped with an associative, commutative, idempotent binary operation (i.e., an idempotent, commutative semigroup).

Some notational conventions. If the operation is denoted \land (meet), we call *L* a \land -semilattice. In this case, we write $a \leq b$ if $a \land b = a$, $a, b \in L$. As we proved earlier, this makes *L* into a poset in which $a \land b$ is the greatest lower bound of *a* and *b*.

We do not require a semilattice to have an identity. If there is one, it is unique. An element of a \land -semilattice *L* is an identity iff it is the largest element of *L*.

An element z in a *-semigroup L is said to be a zero for *, or an absorbing element for * if z * a = z = a * z for all $a \in L$. A semigroup can have at most one zero. A zero in a \land -semilattice (if there is one) is the smallest element of L.

Free semilattices

Proposition. For any set X, let SX denote the set of non-empty finite subsets of X with the operation * defined by $A * B := A \cup B$. Then SX is the *free* *-*semilattice on* X.

If we include the empty set, then we get an identity and the free 1-*-semilattice.

Suppose the operation is \land . The order induced on SX by \land is the opposite of the containment order: $A \leq B \iff B \subseteq A$.

Proof Sketch. Suppose *L* is a *-semilattice and $\phi : X \to L$ is a set map. We must show that ϕ has a unique extension to an *-morphism from SX to *L*. Define $\overline{\phi} : SX \to L$ by $\overline{\phi}(A) := *\{\phi(a) \mid a \in A\}$. Then,

$$\overline{\phi}(A * B) = *\{\phi(x) \mid x \in A \cup B\}$$
$$= \left(*\{\phi(x) \mid x \in A\}\right) * \left(*\{\phi(x) \mid x \in B\}\right)$$
$$= \overline{\phi}(A) * \overline{\phi}(B).$$

Frames

Definition. A *frame* \mathcal{A} is a \wedge -semilattice equipped with distinguished elements \top and \bot , and a map \bigvee from the power set of \mathcal{A} to \mathcal{A} such that:

(*i*) for any $a \in A$, $\bot \leq a \leq \top$;

(ii) for any $B \subseteq A$ and any $b \in B$, $b \leq \bigvee B$;

(iii) for any $a \in A$ and any $B \subseteq A$, $a \land \bigvee B = \bigvee \{ a \land b \mid b \in B \}$.

A *frame morphism* is a function between frames that preserves the frame operations \top , \bot , \land and \bigvee .

Here, we have made an "equational" definition of a frame: a frame is a set with operations that obey certain equational laws. (The inequalities can be stated as equations using \land .)

 $\bigvee B$ is the least upper bound of B in the order induced by \land , for if $b \leq u \in \mathcal{F}$ for all $b \in B$, then $\bigvee B = \bigvee \{ u \land b \mid b \in B \} = u \land \bigvee B$, so $\bigvee B \leq u$.

Free Frames

Definition. If *L* is a poset, $\mathcal{D}L$ denotes the set of all down-sets of *L*. For any $a \in L$, $\downarrow a = \{ b \in L \mid b \leq a \} \in \mathcal{D}L$. $\mathcal{E}L$ denotes $\mathcal{D}L$ with a top element $\top_{\mathcal{E}L}$ adjoined.

Note that $\mathcal{D}L$ has operations $\wedge :=$ binary intersection and $\bigvee :=$ arbitrary union, and \wedge distributes over \bigvee , because these are simply set-theoretic operations. The operations extend uniquely to $\mathcal{E}L$, making it a frame.

The empty set is the bottom element or $\mathcal{D}L$. The top element of $\mathcal{D}L$ is $L = \bigvee \{ \downarrow a \mid a \in L \}$, but this is different from $\top_{\mathcal{E}L}$.

Theorem. For any set X, let $\mathcal{F}X := \mathcal{E}(\mathcal{S}X)$, and let $j : X \to \mathcal{F}X$ be the map defined by $j(x) := \downarrow \{x\}$. Then (\mathcal{F}, j) is the free frame on X, i.e., if \mathcal{A} is any frame and $\phi : X \to \mathcal{A}$ is any set map, then there is a unique frame morphism $\overline{\phi} : \mathcal{F}X \to \mathcal{A}$ such that $\phi = \overline{\phi} \circ j$. The Theorem follows immediately from the following:

Lemma. Suppose *L* is a \land -semilattice. Then $\mathcal{E}L$ is the free frame on *L*, i.e., any \land -preserving map $\phi : L \rightarrow A$, where A is a frame, has a unique extension to a frame map $\overline{\phi} : \mathcal{E}L \rightarrow A$.

Proof Sketch. Let $\overline{\phi}(D) := \bigvee \{ \phi(a) \mid a \in D \}$, for any $D \in \mathcal{D}L$, and let $\overline{\phi}(\top_{\mathcal{E}L}) = \top_{\mathcal{A}}$. (See Johnstone, *Stone Spaces* II.1.2. The most interesting part of the proof is the verification that $\overline{\phi}$ preserves \land .)

Frame Congruence Relations

Definition. Suppose \mathcal{A} is a frame and R is an equivalence relation on \mathcal{A} . We say that R is a *frame congruence relation* if it "respects the operations," i.e., if $a_i, a'_i \in \mathcal{A}$ and $a_i R a'_i$ for all $i \in I$, then $(a_0 \wedge a_1) R (a'_0 \wedge a'_1)$ and $\bigvee \{a_i \mid i \in I\} R \bigvee \{a'_i \mid i \in I\}$.

Facts.

- $R \subseteq \mathcal{A} \times \mathcal{A}$ is a frame congruence relation on \mathcal{A} iff R is an equivalence relation and a sub-frame of $A \times \mathcal{A}$.
- ▶ Any intersection of frame congruence relations on *A* is a frame congruence relation on *A*.
- Given any relation on A, there is a smallest congruence relation containing it.

Frames by Generators and Relations

Every element of $\mathcal{F}X$ can be written in the form $\bigvee B$, where each element of B is of the form $x_1 \wedge \cdots \wedge x_n$ for some finite set $\{x_1, \ldots, x_n\} \subseteq X$. We call such an expression a *frame word in* X. Example. $\bigvee \{x_{i1} \wedge \cdots \wedge x_{in_i} \mid i \in I\}$

Suppose X is a set and R is a set of equations between frame words in X. Let $\mathcal{F}X/R$ denote the quotient of $\mathcal{F}X$ by the smallest frame congruence containing R. Let $j_R : X \to \mathcal{F}X/R$ denote the composition of set map $j : X \to \mathcal{F}X$ followed by the quotient map $\mathcal{F}X \to \mathcal{F}X/R$.

Frames by Generators and Relations

Fact. Suppose \mathcal{A} is a frame and $\phi : X \to \mathcal{A}$ is a set map. Suppose further that $\overline{\phi}(w_1) = \overline{\phi}(w_2)$ for all equations $w_1 = w_2$ in R. Then, the the kernel of $\overline{\phi}$ contains R, so (by the isomorphism theorem) there is a unique frame morphism $\widetilde{\phi} : \mathcal{F}X/R \to \mathcal{A}$ such that $\widetilde{\phi} \circ j_R = \phi$.

Localic *l*-spectrum

For any abelian ℓ -group A, let $R_{\ell}(A^+)$ be the set of equations (in $\mathcal{F}A^+$) of the following form, where $0, a, b \in A^+$:

Note that these equations are not true in $\mathcal{F}A^+$, but if we write j_R in place of j, then we have true equations in $\mathcal{F}A^+/R_\ell(A^+)$

Definition. The *localic spectrum* of an ℓ -group A is

$$\mathcal{I}_{\ell} A := \mathcal{F} A^+ / R_{\ell}(A^+).$$

Fact. For $a \in A^+$, let $i(a) := \langle a \rangle$. The map *i* satisfies the relations $I_1 - I_4$, so we have a frame morphism $\overline{i} : \mathcal{I}_{\ell}A \to IdIA$. On the next slide, we examine this map.

 $\overline{i}: \mathcal{I}_{\ell}A \to IdIA$

I_1	j(0) = ot	$\langle 0 \rangle \subseteq I$ for all $I \in IdI A$
I_2	$j(a \land b) = j(a) \land j(b)$	$\langle a \land b \rangle = \langle a \rangle \cap \langle b \rangle$
<i>I</i> ₃	$j(a+b) = j(a) \lor j(b)$	$\langle a+b \rangle = \langle a \rangle \lor \langle b \rangle$
<i>I</i> ₄	$j(a \lor b) = j(a) \lor j(b)$	$\langle a \lor b \rangle = \langle a \rangle \lor \langle b \rangle$

Proposition. The map $\overline{i} : \mathcal{I}_{\ell}A \to IdIA$ is surjective and injective on $\mathcal{I}_{\ell}A \setminus \top_{I_{\ell}A}$.

Proof. Surjectivity is obvious. By l_2 , every element of $\mathcal{I}_{\ell}A$ other than the top can be written in the form $\bigvee \{j_R(g) \mid g \in G\}$ for some subset $G \subseteq A^+$. Suppose $\langle G \rangle = \langle H \rangle$ for some $H \subseteq A^+$. We must show that $\bigvee \{j_R(g) \mid g \in G\} = \bigvee \{j_R(h) \mid h \in H\}$. For any $h \in H$, there is a finite list g_1, \ldots, g_n of elements of G such that $h \leq g_1 + \cdots + g_n$. But then $j_R(h) \leq \bigvee \{j_R(g) \mid g \in G\}$. Since h was an arbitrary element of H, $\bigvee \{j_R(h) \mid h \in H\} \leq \bigvee \{j_R(g) \mid g \in G\}$. The desired equality follows by symmetry.

Note: The map \overline{i} must take the top element of $\mathcal{I}_{\ell}A$ to the top of IdI A, which is $\langle A^+ \rangle$. Thus, while $\top_{\mathcal{I}_{\ell}A} > \bigvee \{ j_R(a) \mid a \in A^+ \}$ in $\mathcal{I}_{\ell}A$, \overline{i} takes both these elements to $\langle A^+ \rangle$. These are the only two elements of $\mathcal{I}_{\ell}A$ that are identified by \overline{i} .

\mathcal{I}_{ℓ} is a functor

Suppose $\phi : A \rightarrow B$ is a morphism of abelian ℓ -groups. Then

$$j_{R} \circ \phi : A^{+} \rightarrow \mathcal{I}_{\ell}B$$

satisfies I_1-I_4 . I_2 , for example, is verified as follows $(a, b \in A)$:

$$(j_R \circ \phi)(\mathbf{a} \land \mathbf{b}) = j_R(\phi(\mathbf{a}) \land \phi(\mathbf{b})) = (j_R \circ \phi)(\mathbf{a}) \land (j_R \circ \phi)(\mathbf{b}).$$

Thus, there is a unique frame morphism $\mathcal{I}_{\ell}\phi : \mathcal{I}_{\ell}A \to \mathcal{I}_{\ell}B$ such that $(\mathcal{I}_{\ell}) \circ j_R = \phi \circ j_R$.

Why isn't $\bigvee \{ j_R(a) \mid a \in A \}$ the top of $\mathcal{I}_{\ell}A$?

Answer: Functoriality! $\phi(A)$ may generate a proper idea of B, in which case,

 $\mathcal{I}_{\ell}\phi\big(\bigvee\{j_{R}(a)\mid a\in A\}\big)$

is not the top of $\mathcal{I}_{\ell}B$. Thus, while *IdI* A is a frame for any abelian ℓ -group A, *IdI* is *not* functorial. \mathcal{I}_{ℓ} repairs this.

 $\mathcal{I}_{\ell}A$ always has a frame morphism to $\{\bot, \top\}$ that sends $\top_{\mathcal{I}_{\ell}A}$ to \top and all other elements of $\mathcal{I}_{\ell}A$ to \bot .

Viewing $\mathcal{I}_{\ell}A$ as a locale, this morphism is a closed point whose only open neighborhood is the whole locale. Suppose X and Y are topological spaces and Y contains such a point q. Let U be a proper open subset of X, and let $f: X \to Y$ be continuous on U and satisfy f(x) = q iff $x \in X \setminus U$. For any open V in Y, either $q \notin V$ and $f^{-1}(V)$ is an open subset of U, or $q \in V$ and $f^{-1}(V) = X$. Thus, a function from X to Y is the same thing as an open subset of X and a continuous function from that set to $Y \setminus \{q\}$. Archimedean kernels (relatively-uniformly-closed ideals)

Localic real numbers

Localic Yosida

Here is a link to a good lecture by Anrdé Joyal on frames and locales (from "A crash course in topos theory: the big picture") https://youtu.be/Ro8KoFFdtS4