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Definitions

Assume A is an abelian `-group and a, ai P A and s P A`.

Definition. We say, a is an s-uniform limit of t ai | i P N u or taiu
converges to a with regulator s (in symbols, ai Ñs a) if:

@m P N DNm P N such that @ i ą Nm : m|a´ ai | ď s.

We write ai Òs a to mean ai ď ai`1 for all i and ai Ñs a.

Definition. We say that a is a relative-uniform limit (or r.u.-limit)
of t ai |P N u, if a is an s-uniform limit of t ai |P N u for some s.

Definition. We say a subset B Ď A is r.u.-closed if a P B
whenever a is an r.u.-limit of some sequence taiu Ď B.

See: A. W. Hager, Math. Slovaca 65 (2015), No. 2, 343–358.
(called “Hager-2015b.pdf” in our Dropbox library)
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R.U.-Closed `-Ideal = Archimedean Kernel

Exercise. Suppose I Ď A is an `-ideal. The following are equivalent:

piq I is r.u.-closed.

piiq I` is r.u.-closed.

piiiq For any increasing sequence 0 ď a1 ď ¨ ¨ ¨ of elements of I , if a is an
r.u.-limit of taiu, then a P I .

Proposition. A{I is archimedean iff I is r.u.-closed

Proof. pñq Suppose A{I is archimedean. Given taiu Ď I`, and ai Òs a, we must
show a P I . For each m P N, m|a´ ai | ď s for large i . Thus, for each m P N,
m|a` I | ď s ` I . By the archimedean hypothesis, a` I “ 0` I , so a P I .

pðq. Suppose A{I is not archimedean. Then, there are a, s P A`zI such that

mpa` I q ď s ` I for all m P N. This implies m|a´ 0| “ ma ď 2s for all m P N,

and hence that that 0 Ñ2s a. Therefore, I is not r.u.-closed.

Note the synonyms: r.u.-closed `-ideal = archimedean kernel
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Facts about r.u.-closed ideals

Lemma 1. Suppose A is archimedean. If ai Òs a in A, then a is
the supremum of t ai | i P N u.
Proof. If for some i , ai ę a, then pai ´ aq` ą 0, and for all j ě i ,

|aj ´ a| ě paj ´ aq` ą pai ´ aq`. By the archimedean hypothesis, there is m

such that mpai ´ aq` ę s, contrary to the assumption that ai Òs a. Thus, a is

an upper bound. If ai ď b ę a for all i P N, then mpa´ bq ę s for some m, so

mpa´ ai q ę s for all i .

Lemma 2. Suppose φ : AÑ B is an `-group morphism. If
ai Ñs a in A, then φpai q Ñφpsq φpaq in B.

Proof. If m|ai ´ a| ď s, then m|φpai q ´ φpaq| ď φpsq.

Comment. Lemma 2 shows that Y (defined below) is a functor.
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An Example and a Comment

Example 1. Let A be the `-group of all (continuous & finitely) piecewise linear
R-valued functions on r0, 1sn. For any element a P A, let Zpaq denote the
zero-set of a. Then xay “ t b P A | Zpaq Ď Zpbq u, since any non-negative PL
function that vanishes on Zpaq is bounded above by a multiple of |a|. The map
AÑ A{xay is equivalent to the restriction map b ÞÑ b|Zpaq. In particular, xay is
r.u.-closed (an archimedean kernel). An element a P A` is a weak unit iff Zpaq
has dimension ă n.

Comment. R.u.-convergence plays an important role in the theory of
archimedean `-groups. Let A be an archimedean `-group. We say taiu Ď A is
s-Cauchy if

@m P N, DNm : i , j ą Nm ñ m|aj ´ ai | ă s.

We say A is r.u.-complete if for all s P A`, every s-Cauchy sequence in A has
an s-uniform limit in A.

Theorem. (Veksler-Ball-Hager) The r.u.-complete archimedean `-groups

form the strongest essential monoreflective subcategory of Arch. Moreover,

an embedding f : AÑ B is isomorphic to the reflection rA : AÑ rA if and

only if B is r.u.-complete and f is epic and majorizing.
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ArchK A

The set of all archimedean kernels of A is denoted ArchK A.
Fact. ArchK A is a complete lattice. For suppose tKj | j P J u Ď ArchK A. Then

ś

t A{Kj | j P J u is

archimedean, and
Ş

tKj | j P J u is the kernel of a ÞÑ pa ` Kj q : AÑ
ś

t A{Kj | j P J u. We will show that
ArchK A is a quotient of Idl A.

Definition. If X Ď A, X˚ denotes the set of r.u.-limits of sequences in X .

Lemma. If J is an `-ideal, so is J˚.
Proof. J˚ is closed under `, for if ai , bi P J and ai Ñs a and bi Ñt b, then ai ` bi P J, and
pai ` bi q Ñps`tq pa ` bq (since m|pa ` bq ´ pai ` bi q| ď m|a ´ ai | ` m|b ´ bi | ď s ` t), ai ^ h P J, so

a ` b P J˚. Moreover, pJ˚q` is convex, for suppose a P J˚ and h P A with 0 ď h ď a. Then ai Ñs a, for
some ai P J and s P A`. But then, ai ^ h P J and pai ^ hq Ñs pa ^ hq “ h, so h P J˚.

Lemma. pJ X Kq˚ “ J˚ X K˚.

Proof. pĎq is clear. pĚq Suppose f P J˚ X K˚. Then f is an r.u.-limit of elements of
J and an r.u.-limit of elements of K . So, ai Òs f for some taiu Ď J and s P A`, and
bi Òt f for some tbiu Ď K and t P A`. W.l.o.g., s “ t, since we may replace s and t
with s _ t. By definition of s-regulated convergence, there are functions
N,N 1 : NÑ N such that mpf ´ ai q ď s if i ą Npmq, and mpf ´ bi q ď s if i ą N 1pmq.
Let N2 “ N _ N 1. Then

m
`

pf ´ ai q _ pf ´ bi q
˘

ď s, if i ą N2pmq,

but pf ´ ai q _ pf ´ bi q “ f ` p´ai _´bi q “ f ´ pai ^ bi q. Since ai ^ bi P J X K ,
f P pJ X Kq˚.
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ArchK A is a quotient of Idl A

Starting with any J P Idl A, if we iterate the ˚-operation
transfinitely, we eventually reach a stable value. More precisely, let
J0 “ J. For ordinals α, let Jα`1 :“ pJαq˚. For limit ordinals λ, let
Jλ :“

Ť

t Jα | α ă λ u. Let rupJq :“ Jω1 .

Proposition. ru : Idl AÑ Idl A is a nucleus, whose image is
ArchK A.

Proof. By construction J Ď rupJq “ ruprupJqq. By the Lemma,
rupJ X K q “ rupJq X rupK q, so ru is a nucleus. Evidently,
J P ArchK A iff J “ J˚ iff J “ rupJq.

Problem. Give “nice” (e.g., finite, or easy to check, and useful)
conditions on a, b P A for rupxayq “ rupxbyq and for xay “ rupxayq.
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The Yosida Frame YA of an `-group A

Definition. Let A be an abelian `-group, and let G be a frame. We
say that g : A` Ñ G is a Yosida map out of A if for all a, b P A`:

pI1q gp0Aq “ K,
pI2q gpa^ bq “ gpaq ^ gpbq,
pI3q gpa_ bq “ gpaq _ gpbq,
pI4q gpa` bq “ gpaq _ gpbq;
pY q if taiu

8
i“0 Ď A` and ai Òb a, then gpaq “

Ž8

i“1 gpai q.

The universal Yosida map out of A is denoted y : A` Ñ YA.

Remarks. In the terminology of the last lecture, if we let
R “ RI&Y pA

`q, then YA “ FA`{R and y “ jR . In the definition
above, we have used a more efficient way of speaking about frames
by generators and relations.
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Relationships between YA and ArchK A

In the following diagram:

§ qY is the frame quotient mapping induced by the relation Y ;
§ jR and y are the “presentation maps” for I`A and YA;
§ i takes a P A` to the `-ideal xay;
§ ru is the nucleus described on the previous slide, viewed as a frame

morphism;
§ i and ru ˝ i are the induced frame morphisms.

I`A YA

A`

Idl A ArchK A

i

qY

ru˝i

i

jR y

ru˝i

ru

If G is a frame and we adjoin a new top element that is different from JG , we
call the result the augmentation of G. I`A is the augmentation of Idl A, and
YA is the augmentation of ArchK A.
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YpA, eq

Definition. Suppose e P A`. YpA, eq denotes the quotient of ArchK A (or of
YA) obtained by identifying ypeq with the top. (This is the open sublocale of
YA corresponding to the map z ÞÑ z ^ ypeq.)

Theorem. If A is divisible, YpA, eq is regular.
Remark. ye

`

pa´ bq`
˘

“ rra ą bss “ “the extent to which a ą b”.

Proof. Let yepaq :“ ypaq ^ ypeq. The elements yepaq, a P A` generate YpA, eq. By
relation Y ,

yepaq “
ł

t ye
`

pa´ 1
n
eq`

˘

| n “ 1, 2, . . . u,

since |a´ pa´ 1
n
eq`| ď 1

n
e. Suppose 1 ą p ą s ą q ą 0 in Q. Then

ye
`

pa´ qeq`
˘

_ ye
`

pse ´ aq`
˘

“ ye
`

pa´ qeq _ pse ´ aq _ 0
˘

“ ye
`“

pa´ q`s
2

eq _ p q`s
2

e ´ aq
‰

`
s´q

2
e _ 0

˘

“ ye
`ˇ

ˇpa´ q`s
2

eq
ˇ

ˇ`
s´q

2
e _ 0

˘

“ yepeq “ J

By a similar argument, ye
`

pa´ peq`
˘

^ ye
`

pse ´ aq`
˘

“ K. Thus ye
`

pa´ peq`
˘

is

well-inside ye
`

pa´ qeq`
˘

ď yepaq.

Comments. (1) The proof actually demonstrates completely regularity. (2) The
divisiblity hypothesis can be dispensed with. (3) As a corollary, ArchK A is locally
regular. I do not know if it is the case that ArchK A is regular for all A.
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What’s next?

We have developed two representation theorems:

(I) the embedding of an arbitrary abelian `-group in a product of
totally-ordered groups; and

(II) the embedding of an arbitrary archimedean `-group with weak unit in a
DpX q, X a compact T2-space.

We are in the middle of developing a third:

(III) an embedding of an arbitrary archimedean `-group with weak unit in a
CpLq, L a regular Lindelöf locale.

We have nearly finished understanding the “representation space” L “ YpA, eq
of (III). We have yet to show that it is Lindelöf. After this, we will equip this
space with an `-group of functions, and then embed A in this `-group.

Ultimate goal. We conjectured that there is a fourth representation theorem
that: piq applies to arbitrary archimedean `-groups, piiq generalizes the localic
represenation, piiiq is functorial, and pivq enables us to deduce much of the
known theory of the category Arch of archimedean `-groups. The goal of this
course is to discover this as-yet unknown representation.
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