A Course on the Yosida Theorem Classical & Pointfree Versions & Applications

James J. Madden, Louisiana State University

Summer 2020

イロン イボン イヨン トヨ

1/10

Lecture 7 (a) Lindelöf Locales (b) The Locale of Real Numbers

Tuesday, July 21, 2020

Compact and Lindelöf elements of a frame

An element a of a frame is said to be:

• compact if: $a \leq \bigvee B \Rightarrow \exists$ finite $B' \subseteq B$ s.t. $a \leq \bigvee B'$;

• Lindelöf if: $a \leq \bigvee B \Rightarrow \exists$ countable $B' \subseteq B$ s.t. $a \leq \bigvee B'$.

A frame is said to be compact (Lindelöf) if its top element is such.

If $Idl_{\ell} A :=$ the frame of ℓ -ideals of an abelian ℓ -group A, the compact elements of $Idl_{\ell} A$ are the finitely-generated (= principal) ℓ -ideals. $Idl_{\ell} A$ is compact iff A has an element that is contained in no proper ℓ -ideal, i.e., a strong unit.

Let ArchK A := the frame of archimedean kernels of A. The Lindelöf elements of ArchK A are the countably-generated archimedean kernels. ArchK A is Lindelöf if there is countable $B \subseteq A$ that is contained in no proper archimedean kernel.

Example. Let A denote the ℓ -group of sequences with finite support. A has no weak unit, but nonetheless ArchKA is Lindelöf.

Example. If $\mathcal{Y}(A, e) = (ArchKA)/(ru\langle e \rangle \sim \top)$ is Lindelöf, because $ru\langle e \rangle$ is.

In general, $\mathcal{Y}(A, e)$ need not be compact. The countable relation Y allows that $ru\langle e \rangle$ may be the supremum of a countable family of archimedean kernels strictly smaller than $ru\langle e \rangle$.

A Digression on Coherent and Algebraic Frames

There are several different categories of distributive lattices, depending on what structure is present and preserved by morphisms.

- ▶ D¹₀ denotes the category of distributive lattices with bottom and top element and 0-1-∨-∧-preserving morphisms.

To each of these categories, there is a forgetful functor from **Frm**. Each has a left adjoint (because free frames exist).

The left adjoint of the forgetful functor $\mathbf{Frm} \rightarrow \mathbf{D}_0^1$ assigns to a 0-1-lattice *D* its frame of ideals, denoted by IdID. The top of IdID is $\downarrow \mathbf{1}_D = D$, and the bottom is $\downarrow \mathbf{0}_D = \{\mathbf{0}_D\}$. A frame of the form IdID is said to be *coherent*. The coherent frames are characterized as those whose the compact elements form a generating sub-0-1-lattice. See Johnstone, *Stone Spaces*, for a discussion.

The following remark is relevant the "unknown representation". The left adjoint of the forgetful functor $Frm \rightarrow D_0$ assigns to a 0-lattice G its augmented frame of ideals, denoted by IdI^*G . The top of IdI^*G is strictly larger than the improper ideal $\bigvee\{\downarrow d \mid d \in G\} = G$. IdI^*G contains IdIG as an open sublocale. If G has no top element, IdIG is not compact. In the literature, a frame of the form IdIG, where G is an object of D_0 , is said to be an algebraic frame with FIP.

One might also consider distributive lattices possibly without top or bottom and $\vee - \wedge$ -preserving morphisms. Also, one may consider the frame of ideals of an arbitrary distributive join-semilattice (= an *algebraic frame*).

On σ -Coherent and σ -Algebraic Frames

A σ -frame is a set equipped with a countable join operation and a binary meet operation that distributes over countable joins ("Madden-Vermeer-1986.pdf").

- $\sigma \mathbf{Fr}_0^1$ denotes the category of σ -frames with bottom and top element and 0-1- $\sqrt{-\wedge}$ -preserving morphisms.
- σ **Fr**₀ denotes the category of σ -frames with bottom element and 0- $\sqrt{-}$ -preserving morphisms.

The left adjoint of the forgetful functor $\mathbf{Frm} \to \sigma \mathbf{Fr}_0^1$ assigns to a 0-1- σ -frame S its frame of σ -ideals (i.e., ideals closed under countable suprema). This is denoted by $Idl_{\sigma}S$. A frame of the form $Idl_{\sigma}S$ is said to be σ -coherent. The σ -coherent frames are characterized as those whose Lindelöf elements form a generating sub-0-1- σ -frame ("Madden-Vermeer-1986.pdf," Proposition 1.1).

Ad the "unknown representation". The left adjoint of the forgetful functor $\mathbf{Frm} \rightarrow \sigma \mathbf{Fr}_0$ assigns to a 0- σ -frame T its augmented frame of σ -ideals, denoted by $IdI_{\sigma}^{*}T$. The top of $IdI_{\sigma}^{*}S$ is strictly larger than the improper σ -ideal, T. $IdI_{\sigma}^{*}T$ contains $IdI_{\sigma}T$. If T has no top element, $IdI_{\sigma}T$ is not Lindelöf. (The term, " σ -algebraic with FIP," would fit.)

Regular σ -frames and regular Lindelöf locales

Recall the definitions: Suppose *D* is a bounded distributive lattice, and $a, b \in D$. We say *b* is *well-below a* if there is $c \in D$ such that $b \land c = 0$ and $a \lor c = 1$. A frame is *regular* if every element is the supremum of the elements that are well-below it. A 0-1- σ -frame is *regular* if every element is the supremum of a countable set of elements that are well-below it.

Lemma. Let S be a 0-1- σ -frame. Then $IdI_{\sigma}S$ is regular (as a frame) iff S is regular (as a σ -frame). (*Proof.* Exercise.)

Lemma. Suppose $f : A \to B$ is a frame morphism, with A is regular and B Lindelöf. If $a \in A$ is Lindelöf, then so is f(a). (cf. "Madden-1991-kappa.pdf," 4.2)

Proof. There is a countable set *X* of elements well-below *a* such that $\bigvee X = a$. For each $x \in X$, select $x' \in A$ such that $a \lor x' = 1_A$ and $x \land x' = 0_A$. Suppose $f(a) \leq \bigvee Y$ for some $Y \subseteq B$. Since $f(x') \lor \bigvee Y = 1_B$, there is for each $x \in X$, a countable set $Y_x \subseteq Y$ such that $f(x') \lor \bigvee Y_x = 1_B$. Moreover, $f(x) \leq \bigvee Y_x$, since $f(x) \land f(x') = 0_B$. Thus, $f(a) = \bigvee_{x \in X} f(x) \leq \bigvee_{x \in X} \bigvee Y_x = \bigvee(\bigcup_{x \in X} Y_x)$.

Proposition. The functor IdI_{σ} is an equivalence between the category of regular 0-1- σ -frames and the category of regular Lindelöf frames. (Madden op. cit., 4.3)

Some research questions

Question. The definition of regularity requires a top element. Suppose *S* is a 0- σ -frame with no top element such that for all $s \in S$, the 0-1- σ -frame $\downarrow s$ is regular. Must $Idl_{\sigma}S$ be regular? (A similar question was asked at the end of Lecture 6.)

Related Question. A distributive lattice *L* with 1 is said to be *conjunctive* if for all $a, b \in L$: if $a \leq b$, there is $c \in L$ such that $a \lor c = 1$ and $b \lor c \neq 1$. Suppose *L* is a distributive lattice without top element such that $\downarrow a$ is conjunctive for all $a \in L$. Is *Idl L* conjuctive?

Thoughts toward a general problem. This is an admittedly vague attempt to generalize the two problems above. Suppose that P is a frame property. Say that P is \bigvee -stable if for any frame F and any family $A \subseteq F$, if $P(\downarrow a)$ for all $a \in A$, then $P(\downarrow \bigvee A)$. We could impose conditions on F or A, e.g., ask about \bigvee -stability for directed A in for all frames in some designated class. How do we recognize \bigvee -stable properties?

Example. Suppose *F* is a frame and let *A* be a subset of *F*. If $\downarrow a$ is boolean for all $a \in A$, then $\downarrow \bigvee A$ is boolean. *Proof.* Suppose $b \leq \bigvee A$. For each $a \in A$, pick c_a such that $(b \land a) \lor c_a = a$ and $b \land c_a = 0$. Set $c = \bigvee \{c_a \mid a \in A\}$. Then $b \lor c = \bigvee \{b \lor c_a \mid a \in A\} = \bigvee A$ (since $a \leq b \lor c_a \leq \bigvee A$), and $b \land c = \bigvee \{b \land c_a \mid a \in A\} = 0$.

Example. With "regular" in place of "boolean," the statement is not true. Let \mathbb{B} be the real line with a new element 0' adjoined. The neighborhoods of 0 are the sets containing an interval $(-\epsilon, \epsilon) \subseteq \mathbb{R}$. The neighborhoods of 0' are the sets containing some $(-\epsilon, 0) \cup (0, \epsilon) \cup \{0'\}$. Both $\mathbb{B}\setminus\{0'\}$ and $\mathbb{B}\setminus\{0'\}$ are regular, but \mathbb{B} is not. Let a be a neighborhood of 0 not containing 0', and let b be any neighborhood of 0 contained in a. If $a \cup c = \mathbb{B}$, then $0' \in c$, so c is a neighborhood of 0', so $b - c \neq \emptyset$.

Localic Yosida: Sketch of proof

- 1. $\mathcal{Y}(A, e)$ is the frame of archimedean kernels (i.e., relatively-uniformly-closed ℓ -ideals) of A that are contained in the archimedean kernel generated by e. For $a \in A^+$, $y_e(a)$ is the archimedean kernel generated by a.
- 2. For any $a \in A$, and any rational numbers p and q, define

$$\Phi_0(a)(p,q) := y_e \big((a - pe)^+ \wedge (qe - a)^+ \big).$$

(Intuitively, this is the open sublocale of $\mathcal{Y}(A, e)$ on which pe < a < qe.)

- Verify that (p,q) → Φ₀(a)(p,q) satisfies the Joyal relations (see below) for the localic reals R, hence conclude that Φ₀(a) extends to a frame map Φ(a) : R → Y(A, e).
- Verify that a → Φ(a) ∈ RY(A, e) is an ℓ-group homomorphism.
- 5. Functoriality follows from the nature of the constructions.

The frame of real numbers

Definition. Let \mathcal{F} be a frame. A function $f : \mathbb{Q}^2 \to \mathcal{F}$ is a *Joyal map* if, for all p, q, r, s in \mathbb{Q} :

$$\begin{array}{l} (R_1) & \text{if } q \leq p, \text{ then } f(p,q) = \bot; \\ (R_2) & f(p,q) \wedge f(r,s) = f(\max(p,r),\min(q,s)); \\ (R_3) & \text{if } p \leq r < q \leq s, \text{ then } f(p,q) \vee f(r,s) = f(p,s); \\ (R_4) & \bigvee \{ f(x,y) \mid x, y \in \mathbb{Q} \& p < x < y < q \} = f(p,q); \\ (R_5) & \bigvee \{ f(x,y) \mid x, y \in \mathbb{Q} \} = \top. \end{array}$$

The universal Joyal map is denoted by $j: \mathbb{Q}^2 \to \mathcal{R}$. The codomain \mathcal{R} (i.e., the frame freely generated by \mathbb{Q}^2 subject to relations $(R_1) \cdot (R_5)$) is called the *frame of opens of the real numbers* or the *frame of reals* for short. By definition, if $f: \mathbb{Q}^2 \to \mathcal{F}$ is a Joyal map, then there is a unique frame morphism $\overline{f}: \mathcal{R} \to \mathcal{F}$ such that $\overline{f} \circ j = f$.

Localic Yosida

Lemma. (cf. "Madden-1992-frames.pdf" 4.2) Suppose A is an abelian ℓ -group and $e \in A^+$. For each $a \in A$, the map $\Phi_0(a) : \mathbb{Q}^2 \to \mathcal{Y}(A, e)$ defined by:

$$\Phi_0(a)(p,q) := y_e \big((a - pe)^+ \wedge (qe - a)^+ \big)$$

satisfies $(R_1)-(R_5)$.

Proof. Suppose $p, q, r, s \in \mathbb{Q}$.

(*R*₁): Suppose $q \leq p$. Then $0 \leq (a - pe)^+ \land (qe - a)^+ \leq (a - pe)^+ \land (pe - a)^+ = 0$. So $\Phi_0(a)(p,q) = y_e(0) = \bot$.

 (R_2) , (R_3) : Similar direct computations using the arithmetic of ℓ -groups and referencing $(I_1)-(I_4)$. (R_3) resembles the computation used to prove that $\mathcal{Y}(A, e)$ is regular (Lecture 6, slide 11).

 $\begin{aligned} (R_4): & \forall \{\Phi_0(a)(p',q') \mid p < p' < q' < q\} = \bigvee \{y_e(a - p'e)^+ \mid p < p'\} \land \bigvee \{y_e(q'e - a)^+ \mid q' < q\}. \\ & \text{Suppose } q' < q. \text{ Then } (qe \lor a) - (q'e \lor a) \leqslant (q - q')e, \text{ so} \\ & (qe - a)^+ - (q'e - a)^+ \leqslant (q - q')e. \text{ Substituting } q' = q - (1/n): \end{aligned}$

$$\left((q-\frac{1}{n})e-a\right)^+\uparrow_e(qe-a)^+$$

(R_5): This uses $(e - \frac{1}{n}|a|) \uparrow_{|a|} e$. This is the only place in the proof where we use the full strength of (Y). For (R_4), only *e*-uniform convergence is needed.

10/10