A Course on the Yosida Theorem Classical & Pointfree Versions & Applications

James J. Madden, Louisiana State University

Summer 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1/11

Lecture 9 More Computations: Proof of Localic Yosida Concluded

Tuesday, August 4, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2/11

Review: Where we stand, now:

Let A be an Archimedean ℓ -group, and suppose $e \in A^+$.

We have defined:

- (1) the "general Yosida locale" $\mathcal{Y}A$ and the "topped Yosida locale" $\mathcal{Y}(A, e)$.
- (2) for each a ∈ A, the frame morphism Φ(a, e) : R → Y(A, e), and hence the map: Φ(_, e) : A → R Y(A, e).

In the last lecture, we indicated some of the argument needed to show that $\mathcal{RY}(A, e)$ is an ℓ -group. We leave the full verification to the audience. (See "Madden-1992-frames.pdf" for hints.)

Comment on notation. We may write $\mathcal{Y}_e A$ instead of $\mathcal{Y}(A, e)$ and $\Phi_e(a)$ instead of $\Phi(a, e)$. The map in (2), above, may be written $\Phi_e : A \to \mathcal{R} \mathcal{Y}_e A$.

The next step (cf. Lecture 7, slide 8, item 4) in our proof-sketch of the localic Yosida Theorem (constructive version) is to show that $\Phi_e(a + b) = \Phi_e(a) + \Phi_e(b)$ for all $a, b \in A$. One must also verify that Φ_e preserves \lor , but this is similar to (and easier than) showing that Φ_e preserves +.

The classical Yosida Representation starts with algebraic data (maximal ideals) and then introduces a topology. The localic version inverts this: it starts with a localic construction, then shows that the algebraic structures carry through.

What we need to prove

Pointwise addition of functions is described by the following diagram:

$$\begin{array}{ccc} X & \stackrel{\Delta}{\longrightarrow} X \times X & \stackrel{f \times g}{\longrightarrow} \mathbb{R} \times \mathbb{R} & \stackrel{+}{\longrightarrow} \mathbb{R}, \\ x & \longmapsto & (x, x) & \longmapsto & (f(x), g(x)) & \longmapsto & f(x) + g(x). \end{array}$$

The corresponding operation in frames is described thus (where $\phi, \gamma : \mathcal{R} \to \mathcal{O}$):

$$\mathcal{O} \longleftarrow \mathcal{\nabla} \longrightarrow \mathcal{O} \otimes \mathcal{O} \longleftarrow \mathcal{A} \otimes \gamma \longrightarrow \mathcal{R} \otimes \mathcal{R} \longleftarrow \mathcal{R},$$

$$\bigvee \{ \phi(s,t) \land \gamma(u,v) | \cdots \} \longleftarrow \bigvee \{ \phi(s,t) \otimes \gamma(u,v) | \cdots \} \longleftarrow \bigvee \{ (s,t) \otimes (u,v) | \cdots \} \longleftarrow (p,q),$$

where \cdots stands for $p \leq s + u \& t + v \leq q$.

To show that $\Phi_e(a + b) = \Phi_e(a) + \Phi_e(b)$, we must show that:

$$\Phi_e(a+b)(p,q) = \bigvee \{ \Phi_e(a)(s,t) \land \Phi_e(b)(u,v) \mid p \leq s+u \& t+v \leq q \}.$$

The LHS is:

$$y_e\left(\left(a+b-pe\right)^+ \wedge \left(qe-(a+b)\right)^+
ight).$$

The RHS is:

$$\bigvee_{\text{in } \mathcal{Y}_{e}A} \left\{ y_{e} \left((a-se)^{+} \land (te-a)^{+} \right) \land y_{e} \left((b-ue)^{+} \land (ve-b)^{+} \right) \middle| p \leqslant s + u \& t + v \leqslant q \right\}.$$

Note: $(\bigvee A) \land (\bigvee B) = \bigvee \{ (\bigvee A) \land b \mid b \in B \} = \bigvee \{ a \land b \mid a \in A, b \in B \}.$

<ロト < 部ト < 言ト < 言ト 言の < で 4/11

What we need to prove (continued)

It suffices to show:

$$\begin{array}{ll} (i) & y_e \left((a+b-pe)^+ \right) & = & \bigvee \left\{ y_e \left((a-se)^+ \wedge (b-ue)^+ \right) \mid p \leqslant s+u \right\}, \\ (ii) & y_e \left((qe-(a+b))^+ \right) & = & \bigvee \left\{ y_e \left((te-a)^+ \wedge (ve-b)^+ \right) \mid t+v \leqslant q \right\}. \end{array}$$

The \geq inequalities follow from:

Lemma. Any ℓ -group satisfies the identity: $(x + y)^+ \ge x^+ \land y^+$.

Proof.
$$(x + y)^{+} - (\frac{1}{2})(x + y) = (\frac{1}{2})|x + y|.$$

 $[x^{+} \wedge y^{+}] - (\frac{1}{2})(x + y) = (\frac{1}{2})[(x - y) \wedge (y - x)] = -(\frac{1}{2})|x - y|.$

We include the proof because it illustrates a strategy that we use again (with g and g_n , next slide).

To show the \leq inequalities, it suffices to show:

(i)
$$[(1/2)(a + b - pe)^+ \land e] \in RU\{(a - se)^+ \land (b - ue)^+ \land e \mid s + u = p\}$$
, and
(ii) $[(1/2)(qe - (a + b))^+ \land e] \in RU\{(te - a)^+ \land (ve - b)^+ \land e \mid t + v \leq q\}$.

Here, RUX denotes the set of relative-uniform limits of sequences of elements of X. Note that including the " $\wedge e$ " is permissible, because $y_e(e) = \top_{\mathcal{Y}_eA}$, and $y_e(a \wedge b) = y_e(a) \wedge y_e(b)$. The factor (1/2) is harmless, because $y_e((1/2) a) = y_e(a)$.

Proof of (*ii*)

Suppose A is a divisible abelian ℓ -group, $a, b \in A$, $e \in A^+$, $q \in \mathbb{Q}$, and $n \in \mathbb{N}$. Let

$$g := \frac{1}{2} \left(q e - (a + b) \right), \text{ and } \qquad g_n := \bigvee_{i=-n^2}^{n^2} \left[\left(\left(\frac{1}{2}q + \frac{i}{n} \right) e - a \right) \wedge \left(\left(\frac{1}{2}q - \frac{i}{n} \right) e - b \right) \right].$$

$$\mathbf{g} - \mathbf{g}_n = \frac{1}{2} \left(q \, \mathbf{e} - (\mathbf{a} + \mathbf{b}) \right) + \bigwedge_{i=-n^2}^{n^2} \left[\left(\mathbf{a} - \left(\frac{1}{2} q + \frac{i}{n} \right) \mathbf{e} \right) \vee \left(\mathbf{b} - \left(\frac{1}{2} q - \frac{i}{n} \right) \mathbf{e} \right) \right]$$

$$= \bigwedge_{i=-n^2}^{n^2} \left[\left(\frac{1}{2}(a-b) - \frac{i}{n}e \right) \vee \left(\frac{1}{2}(b-a) + \frac{i}{n}e \right) \right] = \bigwedge_{i=-n^2}^{n^2} \left| \frac{1}{2}(a-b) - \frac{i}{n}e \right|.$$
 Mensch!

Lemma. If $f, w \in A$ and $0 \leq w$, then $\bigwedge_{i=-m}^{m} |f - iw| \leq (|f| - mw) \vee w$. ("Madden-1992-frames.pdf", 4.4.)

$$0 \leq g - g_n \leq \left(\frac{1}{2}|a - b| - ne\right) \lor \frac{1}{n}e$$
$$\leq \left(\frac{1}{2}|a - b| - ne\right)^+ \lor \frac{1}{n}e$$
$$(g - g_n)^+ \land e \leq \left(\left(\frac{1}{2}|a - b| - ne\right)^+ \land e\right) \lor \frac{1}{n}e$$

Lemma. If $x, w \in A^+$, $(x - nw)^+ \land w \leq \frac{1}{n}x$. ("Madden-1992-frames.pdf", 4.3.)

$$(g^+ \wedge e) - (g^+_n \wedge e) \leqslant (g - g_n)^+ \wedge e \leqslant \frac{1}{n} \left(\frac{1}{2} |a - b| \vee e \right)$$

This concludes the proof of (ii).

6/11

Remarks on a key lemma.

Lemma. If $f, w \in A$ and $0 \leq w$, then $\bigwedge_{i=-m}^{m} |f - iw| \leq (|f| - mw) \vee w$.

Here are graphs of the functions in the lemma when w = 1, $f = x^3 - 4x$ (in gray) and *m* takes the values 1, 5 and 40. The LHS is depicted in blue, and the RHS in orange.

Summary

We have now completed the proof sketch of the following theorem:

Localic Yosida. Suppose A is an archimedean ℓ -group, and $e \in A^+$. Let $y_e : A^+ \to \mathcal{Y}_e A$ be the frame freely generated by A^+ modulo relations (I_1) - (I_4) , (Y) and $y_e(e) = \top$. Let $\Phi_e : A \to \mathcal{R} \mathcal{Y}_e A$ be defined by

$$\Phi_e(a)(p,q) = y_e\left(\left(a - pe\right)^+ \wedge \left(qe - a\right)^+\right), \quad p,q \in \mathbb{Q}.$$

Then $\mathcal{Y}_e A$ regular Lindelöf and Φ_e is an ℓ -homomorphism.

What is ker Φ_e ? (Cf. Lecture 3, slides 5 and 8)

Proposition. Suppose A is an archimedean ℓ -group and $a, e \in A^+$. The following are equivalent:

(i) $a \in \ker \Phi_e$; (ii) $y_e(a) = \bot$; (iii) $a \land e = 0$.

Remark. Suppose $\phi : \mathcal{R} \to \mathcal{O}$. Then

$$\phi = 0 \iff \text{for all } p, q \in \mathbb{Q}, \ \phi(p,q) = \begin{cases} \top, & \text{if } p < 0 < q; \\ \bot, & \text{otherwise} \end{cases}$$

Proof.
$$(i \Rightarrow ii) \Phi_e(a) = 0$$
 implies $y_e((a - pe)^+) = \begin{cases} \bot, & \text{if } p < 0; \\ \bot, & \text{otherwise} \end{cases}$
Thus $y_e(a) = y_e((a - 0e)^+) = \bot.$

 $(ii \Rightarrow iii)$ $y_e(a) = y(e) \land y(a) = y(e \land a)$. Since A is archimedean, $0 \le b \& y(b) = 0$ iff b = 0. (Caution/Question. "Archimedean" has more than one constructive interpretation. What are we using, here?)

$$\begin{aligned} (iii \Rightarrow i) \text{ Suppose } a \wedge e &= 0. \text{ Then, } y_e(a) = y_e(a \wedge e) = \bot. \text{ Also,} \\ (a - pe)^+ &= \begin{cases} a \vee -pe, & \text{if } p < 0; \\ a, & \text{if } 0 \leq p \end{cases}, \text{ and } (qe - a)^+ = \begin{cases} qe, & \text{if } q > 0; \\ 0, & \text{if } q \leq 0 \end{cases}. \text{ Thus} \\ y_e\left((a - pe)^+\right) &= \begin{cases} \top, & \text{if } p < 0; \\ \bot, & \text{if } 0 \leq p \end{cases}, \text{ and } y_e\left((qe - a)^+\right) = \begin{cases} \top, & \text{if } q > 0; \\ \bot, & \text{if } q \leq 0 \end{cases}. \end{aligned}$$

9/11

٠

Reprise of Lecture 3: Maximal *l*-ideals in Archimedean case

Definition. For $a \in A$, $a^{\perp} := \{ b \in A \mid 0 = |a| \land |b| \}$. We say *a* is a *weak unit* if $0 \leq a$ and $a^{\perp} = \{0\}$.

Theorem. Suppose A is archimedean, $a, b \in A$ and $0 \le a \le b$. Then a^{\perp} is the intersection of the values M of a such that $b \in M^*(:= \langle M, a \rangle)$.

Corollary. If A is archimedean, then a^{\perp} is the intersection of the values of a, and fin_u b is dense in Y(A, a) for all $b \in A$. \uparrow this yields classical version of proposition on previous slide.

Proof. If $a \notin M$ then $a^{\perp} \subseteq M$, so $a^{\perp} \subseteq \bigcap Val(A, a)$. To prove the opposite inclusion, suppose $0 \leq x \notin a^{\perp}$. Then, $0 < x \land a$. Let $d := x \land a$. Note that $d \leq b$. Since A is archimedean and 0 < d, we may—and do—pick $n \in \mathbb{N}$ such that $nd \leq b$. Let

 $h := b - (n d \wedge b)$, and $g := n d - (n d \wedge b)$.

Note that $g \wedge h = 0$. Pick *P* maximal missing *g*. Since *P* is prime, $h \in P$. Also, *P* does not contain *b* (otherwise, it would contain *g*, because $0 < nd \leq nb$ and $(nd \wedge b) \leq b$). Enlarge *P* to a value *M* of *b*. Since $b \notin M$ but $h \in M$, $nd \wedge b \notin M$, so $d \notin M$, so neither *x* nor *a* is in *M*. Clearly $a \in \langle M, b \rangle = M^*$, so *M* is a value of *a*.

What's next?

- 1. Suppose $e, f \in A^+$. What is the relationship between Φ_e and Φ_f ?
- 2. Some thoughts about representations of Arch.
- 3. Examples of some representations:
 - ► Free divisible abelian ℓ-groups
 - Finitely-supported functions on N
 - Conrad-Martinez example
 - Countably-supported functions on an uncountable set

イロト イヨト イヨト イヨト ヨー わへの

11/11

 Hager's Unusual Epicomplete Archimedean *l*-group ("Hager-2015-unusual.pdf")