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Abstract. We will demonstrate the utility of Monte Carlo inte-
gration by using this algorithm to calculate an estimate for �. In
order to improve this estimate, we will also demonstrate how a
family of covariate functions can be used to reduce the variance.
Finally, the optimal covariate function within this family is found
numerically.

1. An Introduction to Monte Carlo Integration

1.1. Monte Carlo Integration. Monte Carlo Integration is a method
for approximating integrals related to a family of stochastic processes
referred to as Monte Carlo Simulations. This term was coined in the
mid 1950’s by Nicholas Metropolis, one of the original scientists of the
Manhattan Project, to reference the random processes of this class
of algorithms. The method relies on the construction of a random
sample of points so outputs are non-unique; however, these outputs
probalistically converge to the actual value of the integral as the number
of sample points is increased. Since its development, Monte Carlo
Integration has been used to evaluate many problems which otherwise
become computationally inefficient or unsolvable by other methods.

1.2. Algorithm. To evaluate I =
∫ b
a
f(x) dx by Monte Carlo Inte-

gration, first generate a sequence of N uniformly distributed random
variables within the interval. That is, create Xi ∼ U [a, b] and let
Yi = f(Xi) for 1 ≤ i ≤ N . Find the average ȲN and multiply this
value by the length of the interval, (b − a), for an approximation of
I. Of course, keep in mind that in general larger choices of N provide
better approximations for I.
An example of this process is tossing rocks into a circular pond for an
estimation of �. If we enclose a circular pond of radius r = 1 with a
square having sides of length 2, we will see that Asquare ∗ n

N
≈ � where

n is the number of rocks in the pond and N is the number of rocks
within the square. Later, we propose another method to estimate �
with MCI.
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1.3. Derivation.

Definition 1.1. [1] For any continuous random variable X ∼ �(X)
and Y = f(X), the expected value of Y is defined as:

E[Y ] = E[f(X)] =

∫ ∞
−∞

f(x)�(x) dx.

If we take �(x) to be the uniform probability density function on [a, b]
so that

�(x) =

{
1
b−a when x ∈ [a, b],

0 otherwise

then E[Y ] takes the form
∫ b
a
f(x) 1

b−a dx. Hence,

I =

∫ b

a

f(x)
b− a
b− a

dx = (b− a)

∫ b

a

f(x)
1

b− a
dx = (b− a)E[Y ].

Theorem 1.2. [2] The Law of Large Numbers states that for

any random variable X with E[X] = �X , that X̄N
P→ �X as N →∞.

Because I can be expressed in terms of E[Y ], this means

(b− a)ȲN
P→ (b− a)�Y = (b− a)E[Y ] = I.

Thus, we can say for large N, (b− a)ȲN = (b− a)f̄(XN) ≈ I.

1.4. Analyzing MCI. Many of the details of MCI should seem strik-
ingly similar to the process of Riemann integration. In both cases, we
choose an arbitrary selection of points across the particular interval
in mind, and use these values to construct a sum which proves more
precise as the number of points is increased. We will now look at this
more precisely.

Theorem 1.3. Riemann Integrability∫ b
a
f(x) dx exists and equals I if and only if

∀ � > 0, ∃ � > 0 where

∣∣∣∣∣
(

N∑
i=1

f(x̃i)Δxi

)
− I

∣∣∣∣∣ < �

∀X = {x1, x2, ..., xN+1} with a ≤ x1 < x2 < ... < xN+1 ≤ b and

Δxi = xi+1 − xi < � for 1 ≤ i ≤ N and ∀ X̃ = {x̃i∣x̃i ∈ [xi, xi+1]}.
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So assuming I exists,
∑N

i=1 f(x̃i)Δxi ≈ I as long as the partition X and

the set of evaluation points X̃ are properly constructed. Assume X̃ =
{X1, X2, ... , XN} is generated from the uniform probability distribution
and assume X is a partition satisfying the above qualities. Since the
points are to be uniformly distributed, we may assume for large N,
Δxi ≈ Δxj ≈ b−a

N
for 1 ≤ i < j ≤ N . Hence,

N∑
i=1

f(x̃i)Δxi ≈
N∑
i=1

f(x̃i)Δx0 ≈ Δx0

N∑
i=1

f(x̃i) ≈
b− a
N

N∑
i=1

f(x̃i) = (b−a) ¯f(x).

Thus, MCI is simply a restructured form of the Riemann Sum. One
should note that larger choices of N give better approximations, since
each additional point creates a further refinement of the partition X.

1.5. Sample Size and Its Relation to the Mesh of X.

Definition 1.4. The Mesh of X
Denoted ∥X∥, the mesh of a partition, X, is defined as the
max{Δxi = xi+1 − xi} for 1 ≤ i < N where N is the size of the
partition.

Since for a set function and interval, the error of the Riemann Sum,
�, depends upon the size of the mesh, which is strictly less than �,
one should pay special attention to the behavior of the mesh dur-
ing Monte Carlo simulations. The sole part of the Monte Carlo al-
gorithm pertaining to the mesh is the random generation of the sample
{X1, X2, ..., XN ′−1}. Thus the question becomes: if an interval is di-
vided into N ′ subintervals by N ′ − 1 points chosen from the uniform
distribution over that interval, what is the probability that no single
subinterval is larger than �?
This is the same as requiring the length of exactly N ′ subintervals to
be less than �. For i = 1, 2, ..., N ′ − 1, it can be shown that the prob-
ability that none of i specific subintervals will be less than � is equal
to (1 − i�)N ′−1[3]. Thus, the probability that the mesh of a partition
is less than some given � is given by

[3] 1−
r∑
i=1

(−1)i−1
(
N ′

i

)
(1− i�)N ′−1 where r =

⌊
1

�

⌋
which will show to increase in value as N ′ is increased. Thus, larger
values of N ′ yield smaller values of � which in turn sharpens the ap-
proximation. We will later show yet another method for bettering the
approximation.
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2. Use of Monte Carlo Integration to Estimate �

We can now compute an estimate for the value of the definite integral∫ 1

−1
1

1+x2
dx using Monte Carlo Integration and use this to estimate the

value of �. This is possible since it is known from calculus that∫ 1

−1

1

1 + x2
dx =

�

2

In order to use Monte Carlo Integration, first we define X to be a
random variable uniformly distributed on the interval [0,1], that is
X ∼ U [0, 1]. Next we let f(X) = 1

1+X2 which is a function of our
random variable. By definition the expected value of f(X) is

E[f(X)] =

∫ ∞
−∞

f(x)g(x) dx

where g(x) is the probability distribution of X. Using the definitions
from Section 1 we see further that

E[f(X)] =

∫ 1

−1

1

1 + x2
1

2
dx

or

E[f(X)] =

∫ 1

0

1

1 + x2
dx

since we are dealing with an even function. Thus, 2E[f(X)] is equal
to the value of the desired definite integral. Now we use a simulation
to estimate E[f(X)]. This is done by instructing Mathematica to re-
peatedly pick a random number between 0 and 1 to use as X and then
record the value of f(X). Once this has been done one hundred thou-
sand times, the mean is taken as an estimate of E[f(X)]. Recall that
this is justified by the Law of Large Numbers explained previously. Fi-
nally, we multiply this estimate by 2 to get our estimate of the value
of the desired definite integral. Doing this in Mathematica yields an
estimate of 1.5713 which is fairly close to the known value of the def-
inite integral �

2
≈ 1.5708 . . . Furthermore, we can double our estimate

and obtain 3.14261, a fairly close estimate of �.

3. Variance Reduction

Variance reduction refers to a variety of methods which may be em-
ployed in conjunction with Monte Carlo simulations, including partial
integration, systematic sampling, and control variates. In order to fully
explain the following concepts, a few definitions must be established.
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Definition 3.1. Variance
[1] If X is a random variable with mean �X , the variance of X,
V ar(X), is defined by

V ar(X) = E[(X − �X)2]

Definition 3.2. Covariance
[1] Let X and Y be random variables. The covariance between X
and Y, denoted Cov(X,Y), is defined by

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

Definition 3.3. Correlation
[1] The correlation of two random variables X and Y , denoted by
�(X, Y ), is defined as

�(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

as long as V ar(X)V ar(Y ) > 0. It can be shown that−1 ≤ �(X, Y ) ≤ 1

The joint goal of the aforementioned variance reduction methods is to
minimize the variance on a simulation. The variance in a simulation
represents the statistical uncertainty in the result. Thus, reduction of
variance clearly leads to a more accurate result. In this paper, we are
interested in demonstrating a method using what are known as control
variates and testing the efficacy of the control variates method.

3.1. Control Variates. The control variate method is useful when
trying to simulate the expected value of a random variable, X. A sec-
ond random variable, Y, for which the expected value is known, is
introduced. The correlation between the two random variables must
then be maximized such that the variance of the estimate of the X is
reduced, leading to a more accurate simulation.

3.2. Derivation of Formulae. Suppose X is a random variable and
that we wish to simulate E[f(X)]. Suppose also ∃ g(X) such that
E[g(X)] = �g. We then define a variable

[2] W = f(X) + a[g(X)− �g]

Note that

[2] E[W ] = E[f(X) + a[g(X)− �g]] = E[f(X)]

Note that the variance of W is

[2] V ar(W ) = V ar[f(X)] + a2V ar[g(X)] + 2aCov[g(X), f(X)]
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The optimal value of a can be found using simple calculus by first
differentiating with respect to a,

d

da
[V ar(W )] =

d

da
[V ar[f(X)] + a2V ar[g(X)] + 2aCov[g(X), f(X)]]

setting the derivative to 0,

0 = 2aV ar[g(X)] + 2Cov[g(X), f(X)]

and solving for a,

a = −Cov[g(X), f(X)]

V ar[g(X)]

We substitute this value of a into our formula for V ar(W ) and get

V ar(W ) = V ar[f(X)]− [Cov[g(X), f(X)]]2

V ar[g(X)]

We further define

R(�) =
[Cov[g(X), f(X)]]2

V ar[g(X)]

for notation convenience.

3.3. Family of g�(X). In the variance reduction of our simulation, we
used the family of functions

g�(X) = e
−X2

�

for

� > 0

The parameter � must be optimized to determine which g�(X) would
most reduce the variance of our estimate.

3.4. Optimization of �. We saw in the previous sections that

V ar(W ) = V ar[f(X)]− [Cov[g(X), f(X)]]2

V ar[g(X)]

or

V ar(W ) = V ar[f(X)]−R(�)

We have no control over the value of V ar[f(X)] itself, due to its con-
stancy. However, we if we can maximize the value of R(�), then we
would minimize V ar(W ). In order to analytically optimize R(�), we
need to differentiate the term. However, we found the term intractable
and optimized the term statistically.



USING MCI AND CONTROL VARIATES TO ESTIMATE � 7

4. Numerical Optimization of Variance

We have shown to most efficiently reduce the variance of the approxi-

mation, it suffices to maximize R(�) = Cov(f(x),g(x,�))2

V ar(g(x,�))
. To numerically

calculate the optimal �, rewrite the ratio in mind and use numerical
methods to plot its value for a range of values.

R(�) =
Cov(f(x), g(x, �))2

V ar(g(x, �))
=

(E[f(x)g(x, �)]− E[f(x)]E[g(x, �)])2

E[g(x, �)2]− E[g(x, �)]2
=

(1
2

∫ 1

−1 f(x)g(x, �) dx− (1
2

∫ 1

−1 f(x) dx)(1
2

∫ 1

−1 g(x, �) dx))2

1
2

∫ 1

−1 g
2(x, �) dx− (1

2

∫ 1

−1 g(x, �) dx)2
=

(
∫ 1

0
f(x)g(x, �) dx− (

∫ 1

0
f(x) dx)(

∫ 1

0
g(x, �) dx))2∫ 1

0
g2(x, �) dx− (

∫ 1

0
g(x, �) dx)

Intuitively, plotting R(�) should map out a peak near some region of
� and focusing in on this interval should justly yield an approximated
�. Since the integral form of R(�) can be evaluated both by Mathe-
matica’s built in functions or by the pre-described method of MCI, the
optimal � was evaluated using both methods for comparison (see next
page for figure).
One can observe that both methods give similar values for an optimal
�. We will take � = 0.68376 to reduce the variance and recalculate the
initial integral in mind.

5. Results

Now that we have found the optimal value of �, we define

W = f(X) + a[g�(X)− �g]
where � = 0.68376. Next, we define X to be a random variable uni-
formly distributed on the interval [0,1], that is X ∼ U [0, 1]. We then
instruct Mathematica to repeatedly pick a random number between 0
and 1 to use as X and then record the value of W which is a function of
X. Once this has been done several thousand times, the mean is taken
as an estimate of E[W ] = E[f(X)]. Recall that this is justified by the
Law of Large Numbers explained previously. Finally, we multiply this
estimate by 2 to get our estimate of the value of the desired definite in-
tegral. Doing this in Mathematica yields an estimate of 1.57179 which
is fairly close to the known value of the definite integral �

2
≈ 1.5708 . . .
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Furthermore, we can double our estimate and obtain 3.14357, a fairly
close estimate of �.
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Figure 1. Finding the Optimal � Using MCI (top) and
Built-In Integrate (bottom)
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