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Abstract. The Legendre, Laguerre, and Hermite equations are
all homogeneous second order Sturm-Liouville equations. Using
the Sturm-Liouville Theory we will be able to show that polynomial
solutions to these equations are orthogonal. In a more general
context, finding that these solutions are orthogonal allows us to
write a function as a Fourier series with respect to these solutions.

1. Introduction

The Legendre, Laguerre, and Hermite equations have many real
world practical uses which we will not discuss here. We will only focus
on the methods of solution and use in a mathematical sense. In solving
these equations explicit solutions cannot be found. That is solutions
in in terms of elementary functions cannot be found. In many cases it
is easier to find a numerical or series solution.

There is a generalized Fourier series theory which allows one to write
a function f(x) as a linear combination of an orthogonal system of
functions φ1(x),φ2(x),...,φn(x),... on [a, b]. The series produced is called
the Fourier series with respect to the orthogonal system. While the

coefficients ,which can be determined by the formula cn =
∫ b
a f(x)φn(x)dx∫ b

a φ
2
n(x)dx

,

are called the Fourier coefficients with respect to the orthogonal system.
We are concerned only with showing that the Legendre, Laguerre, and
Hermite polynomial solutions are orthogonal and can thus be used to
form a Fourier series. In order to proceed we must define an inner
product and define what it means for a linear operator to be self-
adjoint.

Definition 1. We define an inner product 〈y1|y2〉 =
∫ b
a
y1(x)y2(x)dx

where y1, y2 ∈ C2[a, b] and two functions aresaid to be orthogonal if

(y1|y2) =
∫ b
a
y1(x)y2(x) = 0.

Definition 2. A linear operator L is self-adjoint if 〈Ly1|y2〉 = 〈y1|Ly2〉
for all y1,y2.
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2. The Sturm-Liouville Theory

A Sturm-Liouville equation is a homogeneous second order differen-
tial equation of the form

(2.1) [p(x)y′]′ + q(x)y + λr(x)y = 0

where p(x), r(x) > 0 on the interval [a, b] and where the function q(x)
is real-valued. In order to make the problem simpler to solve we assume
p(x), p′(x), r(x), q(x) ∈ C[a, b]. We rewrite the equation in the form
of an eigenvalue equation by defining a linear operator L on C2[a, b] as

(2.2) Ly = [p(x)y′]′ + q(x)y.

Once Ly is defined, the Sturm-Liouville equation can be written in the
form

(2.3) Ly + λr(x)y = 0

Now we impose boundary conditions such that y ∈ C2[a, b] so that
L will be self-adjoint with respect to the inner product defined above
which allows us to rewrite differential equations of the same form to
show that its solutions y1, y2 ∈ C2[a, b] form an orthogonal basis. It
is also necessary to note that if y 6= 0 and y ∈ BC2[a, b] is a solution
to Ly + λry = 0 then y is an eigenfunction and λ is an eigenvalue.
Therefore (y, λ) is an eigenpair.

Remark. We want to know the boundary conditions necessary for L to
be self adjoint. We want 〈Ly1|y2〉 − 〈y1|Ly2〉 = 0. Note that

〈[p(x)y′1]
′ + q(x)y1|y2〉 − 〈y1|[p(x)y′2]

′ + q(x)y2〉

=

∫ b

a

(p′y′1y2 + py′′1y2 + qy1y2 − y1p′y′2 − y1py′′2 − y1q1y2)dx

=

∫ b

a

(p′y′1y2 + py′′1y2 − y1p′y′2 − y1py′′2)dx

=

∫ b

a

[p(y′1y2 − y′2y1)]′dx

= p(b)(y′1(b)y2(b)− y′2(b)y1(b))− p(a)(y1(a)y2(a)− y′2(a)y1(a))

In order for the equality to hold we wish to impose the boundary con-
ditions y(a) = y(b) = 0 y′(a) = y′(b) = 0. With these conditions we
say that y ∈ BC2[a, b].

Lemma 2.1. The eigenvalues of a Sturm-Liouville problem are real.
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Proof. Suppose y 6= 0, y ∈ BC2[a, b] is a solution and satisfies Ly +
λry = 0 and compute 〈Ly|y〉 = 〈y|Ly〉.

Ly = −λry
〈−λry|y〉 = 〈y| − λry〉
−〈λry|y〉 = −〈y|λry〉
〈λry|y〉 = 〈y|λry〉
λ〈ry|y〉 = λ〈y|ry〉

λ

∫ b

a

yyr(x)dx = λ

∫ b

a

yyr(x)dx

λ

∫ b

a

|y(x)|2r(x)dx = λ

∫ b

a

|y(x)|2r(x)dx

λ = λ

∴ λ ∈ R

�

With this equality, we have a new inner product called the weighted
inner product

(2.4) 〈y1|y2〉r =

∫ b

a

y1(x)y2(x)r(x)dx

where y1, y2 ∈ C2[a, b] and (y|y) > 0 when y 6= 0.

Lemma 2.2. If (y1, λ1), (y2, λ2) are eigenpairs where λ1 6= λ2 then y1
and y2 are orthogonal.



4THOMAS COVERSON, SAVARNIK DIXIT, ALYSHA HARBOUR, AND TYLEROTTO

Proof. We know that L is self-adjoint becasue y ∈ BC2[a, b], Ly =
−λry, and λ ∈ R.

〈Ly1|y2〉 = 〈y1|Ly2〉
〈−λ1ry1|y2〉 = 〈y1| − λ2ry2〉
−〈λ1ry1|y2〉 = −〈y1|λ2ry2〉
〈λ1ry1|y2〉 = 〈y1|λ2ry2〉
λ1〈ry|y〉 = λ2〈y1|ry2〉

λ1

∫ b

a

y1y2r(x)dx = λ2

∫ b

a

y1y2r(x)dx

λ1〈y1|y2〉r = λ2〈y1|y2〉r
(λ1 − λ2)〈y1|y2〉r = 0

〈y1, y2〉r = 0

�

Therefore y1 and y2 are orthogonal.

3. The Legendre Polynomials

The Legendre Differential Equation is

(3.1) (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, n ∈ R, x ∈ (−1, 1)

We know that x = 0 is an ordinary point of equation (3.1). We see that
when we divide by the coefficient (1−x2) that x ∈ (−1, 1). We will see
later that the property of orthogonality falls out on the interval [−1, 1]
by the Sturm-Liouville Theory. In order to find the series solution to
this differential equation we will use the power series method.

Let y(x) =
∞∑
k=0

akx
k

y′(x) =
∞∑
k=1

akkx
k−1

y′′(x) =
∞∑
k=2

akk(k − 1)xk−2

Insert these terms into the original equation (3.1) to obtain
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(1− x2)
∞∑
k=2

akk(k − 1)xk−2 − 2x
∞∑
k=1

akkx
k−1 + n(n+ 1)

∞∑
k=0

akx
k = 0.

which gives

∞∑
k=2

akk(k − 1)xk−2 −
∞∑
k=2

akk(k − 1)xk − 2
∞∑
k=1

akkx
k

+ n(n+ 1)
∞∑
k=0

akx
k = 0

making powers and indicies equal

∞∑
k=0

ak+2(k + 2)(k + 1)xk −
∞∑
k=0

akk(k − 1)xk − 2
∞∑
k=0

ak(k)xk

+
∞∑
k=0

n(n+ 1)akx
k = 0

simplify

∞∑
k=0

[(k + 2)(k + 1)ak+2 − (k)(k − 1)ak − 2kak + n(n+ 1)ak]x
k = 0

equating coefficients

(k + 2)(k + 1)ak+2 − (k)(k − 1)ak − 2kak + n(n+ 1)ak = 0

solving for ak+2 gives us a recurrence relation

ak+2 =
k(k + 1)− n(n+ 1)

(k + 2)(k + 1)
ak.(3.2)
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Remark. We are looking for polynomial solutions. If we assume our
solution has degree L then

L∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·+ aL + 0xL+1 + 0xL+2 + · · ·

Where all the terms following aL will be zero, while aL 6= 0. So we
know,

aL+2 = aL
L(L+ 1)− n(n− 1)

(L+ 2)(L+ 1)
= 0

L(L+ 1)− n(n− 1)

(L+ 2)(L+ 1)
= 0

L(L+ 1)− n(n+ 1) = 0

L(L+ 1) = n(n+ 1)

L = n or L = −(n+ 1)

So L = n is our solution because all terms after n+1 are zero. Therefore
the degree of our polynomial solution is n where n is an integer.

We get two linearly independent series solutions from the recurrence
relation (3.2). The first solutions comes from the even values of k.
While the second solution comes from the odds values of k. We assume
a0 6= 0 and a1 6= 0.

y1(x) = a0[1−
n(n+ 1)

2
x2 +

(n− 2)n(n+ 1)(n+ 3)

4!
x4

− (n− 4)(n− 2)n(n+ 1)(n+ 3)(n+ 5)

6!
x6 + · · · ]

y2(x) = a1[x−
(n− 1)(n+ 2)

3!
x3+

(n− 3)(n− 1)(n+ 2)(n+ 4)

5!
x5+· · · ]

Where both solutions are valid for x ∈ (−1, 1). Finding the Le-
gendre polynomials can be very long and difficult. There are many
methods including Rodrigue’s Formula that are useful in finding these
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polynomials. The first five Legendre Polynomials turn out to be

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
x(5x2 − 3)

P4(x) =
1

8
(35x4 − 30x2 + 3)

·
·
·

By rewriting the Legendre Polynomial as a Sturm-Liouville problem,
we can prove its orthgonality. We find that the operator can be written
as

Ly = [(1− x2)y′]′.

where f, g ∈ C[−1, 1]. After imposing the conditions that any f, g ∈
BC2[−1, 1] whenever f, g meet the conditions. We want 〈Lf |g〉 =
〈f |Lg〉. That is we want L to be self-adjoint.

〈Lf |g〉 − 〈f |Lg〉 = 0∫ 1

−1
Lf(x)g(x)− f(x)Lg(x)dx

=

∫ 1

−1
((1− x2)f ′)′g(x)− f(x)((1− x2)g′)′dx

=

∫ 1

−1
(−2xf ′ + (1− x2)f ′′)g − f(−2xg′ − (1− x2)g′′)dx

=

∫ 1

−1
(1− x2)f ′′g − 2xf ′g + 2xfg′ − (1− x2)fg′′dx

=

∫ 1

−1
[(1− x2)(f ′g − g′f)]′dx

= [(1− x2)(f ′g − g′f)]1−1
= 0.

Therefore L is self-adjoint with no imposed conditions.
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Let yn and ym ,where n 6= m, be polynomial solutions to the differ-
ential equation, Lyn = −n(n+ 1)y.

− n(n+ 1)〈yn|ym〉
= 〈Lyn|ym〉
= 〈yn|Lym〉
= 〈yn| −m(m+ 1)ym〉
= −m(m+ 1)〈yn|ym〉

So, −n(n+ 1)〈yn|ym〉 = −m(m+ 1)〈yn|ym〉, since n 6= m, 〈yn|ym〉 = 0.
We could have also used Lemma (2.2) to say that the Legendre polyno-
mials are orthogonal due to the Sturm-Liouville theory. The Legendre
polynomaials are orthogonal on the interval [−1, 1] with respect to the
the weight function r(x) = 1.

4. The Laguerre Polynomials

The Laguerre differential equation is

(4.1) xy′′ + (1− x)y′ + ny = 0, n ∈ R, x ∈ [0,∞).

We know that x = 0 is a regular singular point of equation (4.1). In
order to find the series solution to this differential equation we must
use the Frobenius method which is useful for solving equations of the
form

(4.2) x2y′′ + xp(x)y′ + q(x)y = 0.

We will use the Frobenius method to find a series solution to equation
(4.1) of the form

(4.3) y1(x) = xr
∞∑
k=0

akx
k, a0 6= 0

where r is the root of the indicial equation

(4.4) r(r − 1) + p0r + q0.

We compare the Laguerre equation(4.1) to our standard form equation
(4.2). We multiply (4.1) by x to obtain the equation
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(4.5) x2 + (1− x)xy′ + nxy

We see that

p(x) = (1− x) and q(x) = nx

p(0) = 1 and q(0) = 0.

Hence our indicial equation is

r(r − 1) + r = 0

or

r2 = 0.

Thus the roots of the indcial equation are r1 = r2 = 0. Both roots are
equal so we will have a second linearly independent equation, which we
will not use, of the the form

(4.6) y2(x) = y1(x) lnx+ xr1
∞∑
k=0

bkx
k.

We will now find the recurrence realtion for the coefficients for y1(x)
by direct substitution of y1(x) into equation (4.1).

y(x) = xr
∞∑
k=0

akx
k =

∞∑
k=0

akx
(k+r)

y′(x) =
∞∑
k=1

(k + r)akx
(k+r−1)

y′′(x) =
∞∑
k=2

(k + r)(k + r − 1)akx
(k+r−2)

Plug above equations into (4.1) to get
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x
∞∑
k=2

(k + r)(k + r − 1)akx
(k+r−2) + (1− x)

∞∑
k=1

(k + r)akx
(k+r−1)

+ n
∞∑
k=0

akx
(k+r) = 0

which gives us

∞∑
k=2

(k + r)(k + r − 1)akx
(k+r−1) +

∞∑
k=1

(k + r)akx
(k+r−1)

−
∞∑
k=1

(k + r)akx
(k+r)

+
∞∑
k=0

nakx
(k+r) = 0

making all powers equal

∞∑
k=1

(k + r + 1)(k + r)ak+1x
(k+r) +

∞∑
k=0

(k + r + 1)ak+1x
(k+r)

−
∞∑
k=1

(k + r)akx
(k+r)

+
∞∑
k=0

nakx
(k+r) = 0

set r=0 to get
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∞∑
k=1

(k + 1)(k)ak+1x
k +

∞∑
k=0

(k + 1)ak+1x
k

−
∞∑
k=1

kakx
k

+
∞∑
k=0

nakx
k = 0.

for the terms with k = 1 we see that the k = 0 terms add nothing so

∞∑
k=0

[(k + 1)(k)ak+1 + (k + 1)ak+1 − kak + nak]x
k = 0.

Due to the uniqueness of a power series we set the coefficients equal to
zero and solve for the recurrence relation.

[(k + 1)(k)ak+1 + (k + 1)ak+1 − kak + nak] = 0

[(k + 1)(k) + (k + 1)]ak+1 + (−k + n)ak = 0

ak+1 =
(k − n)ak

[(k + 1)(k) + (k + 1)]
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The coefficients are

a1 = −na0

a2 =
(1− n)a1

4
=
n(n− 1)a0

22

a3 =
(2− n)a2

9
=
−n(n− 1)(n− 2)a0

22 · 32

a4 =
(3− n)a3

16
=
n(n− 1)(n− 2)(n− 3)a0

22 · 32 · 42

.

.

.

ak =
[(k − 1)− n]ak−1

k2
=

(−1)kn(n− 1)(n− 2)...(n− k + 1)

22 · 32 · 42 · · · k2

=
(−1)kn!a0

(k!)2(n− k)!

Therefore by substituting these coefficients into equation (4.3) we ob-
tain the series solution for equation (4.1).

yn(x) = a0(1− nx+
n(n− 1)

22
x2 − n(n− 1)(n− 2)

22 · 32
x3(4.7)

+
n(n− 1)(n− 2)(n− 3)a0

22 · 32 · 42
x4 + · · ·

+
(−1)kn!

(k!)2(n− k)!
xk + · · ·)

Which is

(4.8) yn(x) =
∞∑
k=0

(−1)kn!a0
(k!)2(n− k)!

xk, k = 0, 1, 2, ...

When n = 0, 1, 2, 3, ... the series (4.7) ends. That is the terms after the
nth term are zero. If we take a0 to be k! then we get polynomials. We
call these polynomials Laguerre polyomials. The Laguerre Polynomials
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are

L0(x) = 1(4.9)

L1(x) = −x+ 1

L2(x) = x2 − 4x+ 2

L3(x) = −x3 + 9x2 − 18x+ 6

L4(x) = x4 − 16x3 + 72x2 − 96x+ 24

·
·
·

Ln(x) =
n∑
k=0

(−1)k(n!)2

(k!)2(n− k)!
xk

The Laguerre equation is a Sturm-Liouville equation. By showing that
it is one we will show that the Laguerre polynomials are orthogonal. By
doing so we will be able to express more complicated functions with
these polynomials. The polynomials are said to be orthogonal with
respect to a weight function.

Equation (4.1) can be written in this form, but first we must multiply
equation (4.1) by r(x) and solve for r(x).

(4.10) r(x)xy′′ + r(x)(1− x)y′ + nr(x)y = 0.

We see by comparing (4.10) to equation (4.1) that

p(x) = xr(x)(4.11)

p′(x) = r(x)(1− x)(4.12)

We take the derivative of (4.11) and we obtain

(4.13) p′(x) = xr′(x) + r(x)

Setting equation (4.12) equal to (4.13) and solving we get
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xr′(x) + r(x) = r(x)− xr(x)

xr′(x) + xr(x) = 0

r′(x) + r(x) = 0

Therefore
r(x) = ce−x.

Equation (4.10) now becomes

xe−xy′′ + e−x(1− x)y′ + ne−xy = 0(4.14)

(e−xxy′)′ + ne−xy = 0(4.15)

where

L = (e−xxy′)′(4.16)

In order to prove that the polynomial solutions to the Laguerre equa-
tion are orthogonal we must first prove that (4.16) is self adjoint.We
let y1 and y1 be Laguerre polynomials.

〈L(y1)|y2〉 =

∫ ∞
0

L(y1)y2dx

=

∫ ∞
0

(e−xxy′1)
′y2dx

= e−xxy′1y2|∞0 −
∫ ∞
0

e−xxy′1y
′
2dx

= 0− 0−
∫ ∞
0

e−xxy′1y
′
2dx

= −
∫ ∞
0

e−xxy′1y
′
2dx

= −(y1e
−xxy′2|∞0 −

∫ ∞
0

y1(e
−xxy′2)

′dx)

=

∫ ∞
0

y1(e
−xxy′2)

′dx

= 〈y1|L(y2)〉
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We know that y1 and y2 are continuous at 0. We also see that the
weighting function r(x) = e−x causes

lim
x→∞

e−xxy1y
′
2 = 0, lim

x→∞
e−xxy′1y2 = 0

lim
x→0

e−xxy′1y2 = 0, lim
x→0

e−xxy1y
′
2 = 0

Here we do not need to impose boundary conditions. Also by Lemma
(2.2) we can see that the polynomial solutions to the Laguerre equa-
tions are orthogonal on the interval [0,−∞) with respect to the weight
function r(x) = e−x.

5. Hermite Polynomials

The Hermite differential equation is

(5.1) y′′ − 2xy′ + 2ny = 0n ∈ R, x ∈ (−∞,∞)

We know that x=0 is an ordinary point of equation (5.1). We may use
the power series method to find the polynomial solutions.

y =
∞∑
k=0

akx
k

y′ =
∞∑
k=0

akkx
k−1 =

∞∑
k=0

ak+1(k + 1)xk

y′′ =
∞∑
k=0

ak+1(k + 1)xk−1 =
∞∑
k=0

ak+2(k + 2)(k + 1)xk

By substitution,

∞∑
k=0

ak+2(k + 2)(k + 1)xk − 2x
∞∑
k=0

ak+1(k + 1)xk + 2n
∞∑
k=0

akx
k = 0

∞∑
k=0

ak+2(k + 2)(k + 1)xk − 2
∞∑
k=0

ak+1(k + 1)xk+1 +
∞∑
k=0

2nakx
k = 0

∞∑
k=0

ak+2(k + 2)(k + 1)xk +
∞∑
k=0

2nakx
k − 2

∞∑
k=0

akkx
k = 0

∞∑
k=0

[ak+2(k + 2)(k + 1)xk + 2ak(n− k)]xk = 0
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We obtain the recurrence realation by seting the coefficients equal to
zero. This recurrence relation is

ak+2 =
−2(n− k)

(k + 2)(k + 1)
ak

Remark. We are looking for polynomial solutions. If we assume our
solution has degree L then

L∑
k=0

akx
k = a0 + a1x+ a2x

2 + · · ·+ aL + 0xL+1 + 0xL+2 + · · ·

Where all the terms following aL will be zero, while aL 6= 0. By our
recursion formula, we know

aL+2 = aL
−2(n− L)

(L+ 2)(L+ 1)

−2(n− L)

(L+ 2)(L+ 1)
= 0

−2(n− L) = 0

n− L = 0

n = L

So L = n is our solution because all terms after n+1 are zero. Therefore
the degree of our polynomial solution is n where n is an integer.So we
can rewrite a polynomial of degree L as

n∑
k=0

akx
k

where n must be an integer. This means we can find polynomial solu-
tions where ak is determined by the recurrence relation above.
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After evaluating the Hermite recurrence relation we find that the
polynomials solutions are

P0(x) = 1

P1(x) = 2x

P2(x) = 4x2 − 2

P3(x) = 8x3 − 12x

P4(x) = 16x4 − 48x2 + 12

·
·
·

In order to show that the polynomial solutions are orthogonal we
must put the Hermite equation into the Sturm-Liouville form by finding
some r(x) by which we will multiply the equation (5.1). As in the case
of the Laguerre equation we solve a differential equation of r(x) to get

r(x) = e−x
2
. After multiplying equation (5.1) by r(x) we get

(e−x
2

y′)′ + 2ne−x
2

y = 0

e−x
2

y′′ − 2xe−x
2

y′ + 2ne−x
2

y = 0

We find the linear operator in our case to be Ly = (e−x
2
y′)′ and λr(x) =

2ne−x
2
y. Now, we want L to be self-adjoint for any two polynomial

solutions f and g, f 6= g, on the interval C(−∞,∞) so we want

〈Lf |g〉 = 〈f |Lg〉
〈Lf |g〉 − 〈f |Lg〉 = 0

So

〈Lf |g〉 − 〈f |Lg〉 =

∫ ∞
−∞

Lf(x)g(x)− f(x)Lg(x)dx = 0

For Hermite solutions, Ly = [e−x
2
y′]′, so we want to place restrictions

on f and g so that∫ ∞
−∞

Lf(x)g(x)− f(x)Lg(x)dx = 0
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From the Sturm-Liouville theory we get∫ ∞
−∞

(e−x
2

f ′(x))′g(x)− f(x)(e−x
2

g′(x))′dx

=

∫ ∞
−∞

[(e−x
2

)(f ′(x)g(x)− g′(x)f(x))]′dx

After further evaluation as in the Legendre case we obtain

lim
a→−∞

[(e−x
2

)(f ′(x)g(x)− g′(x)f(x))]0a

+ lim
b→∞

[(e−x
2

)(f ′(x)g(x)− g′(x)f(x))]b0

We want

lim
x→±∞

e−x
2

f(x)g′(x) = 0

for all f, g ∈ BC2(−∞,∞). So we impose the following conditions on
the space of functions we consider

lim
x→±∞

e−x
2/2h(x) = 0

and

lim
x→±∞

e−x
2/2h′(x) = 0

for all h ∈ C2(−∞,∞). The Hermite polynomials are orthogonal on

the interval (−∞,∞) with respect to the weight function r(x) = e−x
2

by Lemma (2.2).
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