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Overview

When discussed in R2, vectors are said to be orthogonal when
the dot product is equal to 0.

ŵ · v̂ = w1v1 + w2v2 = 0.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Overview

Definition

We define an inner product (y1|y2) =
∫ b

a y1(x)y2(x)dx where
y1, y2 ∈ C2[a,b].

Definition
Two functions are said to be orthogonal if (y1|y2) = 0.

Definition
A linear operator L is self-adjoint if (Ly1|y2) = (y1|Ly2) for all
y1,y2.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Trigonometric Functions and Fourier Series
Orthogonality of the Sine and Cosine Functions
Expansion of the Fourier Series

f (x) =
a0

2
+
∞∑

k=1

(ak cos kx + bk sin kx)

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.



General Orthogonality
Legendre Polynomials

Sturm-Liouville
Conclusion

Legendre Polynomials

Legendre Polynomials are usually derived from differential
equations of the following form:

(1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0

We solve this equation using the standard power series
method.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Legendre Polynomials

Suppose y is analytic. Then we have

y(x) =
∞∑

k=0

akxk

y ′(x) =
∞∑

k=0

ak+1(k + 1)xk

y ′′(x) =
∞∑

k=0

ak+2(k + 1)(k + 2)xk

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Recursion Formula

After implementing the power series method, the following
recursion relation is obtained.

ak+2(k + 2)(k + 1)− ak (k)(k − 1)− 2ak (k)− n(n + 1)ak = 0

ak+2 =
ak [k(k + 1)− n(n + 1)]

(k + 2)(k + 1)

Using this equation, we get the coefficients for the Legendre
polynomial solutions.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Legendre Polynomials

L0(x) = 1

L1(x) = x

L2(x) =
1
2
(3x2 − 1)

L3(x) =
1
2
(5x3 − 3x)

L4(x) =
1
8
(35x4 − 30x2 + 3)

L5(x) =
1
8
(63x5 − 70x3 + 15x)

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Legendre Graph

Figure: Legendre Graph

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.



General Orthogonality
Legendre Polynomials

Sturm-Liouville
Conclusion

Sturm-Liouville

A Sturm-Liouville equation is a second-order linear differential
equation of the form

(p(x)y ′)′ + q(x)y + λr(x)y = 0

p(x)y ′′ + p′(x)y ′ + q(x)y + λr(x)y = 0

which allows us to find solutions that form an orthogonal
system.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Sturm-Liouville cont.

We can define a linear operator by

Ly = (p(x)y ′)′ + q(x)y

which gives the equation

Ly + λr(x)y = 0.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Self-adjointness

To obtain orthogonality, we want L to be self-adjoint.

(Ly1|y2) = (y1|Ly2)

which implies
0 = (Ly1|y2)− (y1|Ly2)

= ((py ′1)
′ + qy1|y2)− (y1|(py ′2)

′ + qy2)

=

∫ b

a
(p′y ′1y2 + py ′′1 y2 + qy1y2 − y1p′y ′2 − y1py ′′2 − y1q1y2)dx

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Self-adjointness

=

∫ b

a
(p′y ′1y2 + py ′′1 y2 − y1p′y ′2 − y1py ′′2 )dx

=

∫ b

a
[p(y ′1y2 − y ′2y1)]

′dx

= p(b)(y ′1(b)y2(b)−y ′2(b)y1(b))−p(a)(y1(a)y2(a)−y ′2(a)y1(a))

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.



General Orthogonality
Legendre Polynomials

Sturm-Liouville
Conclusion

Orthogonality Theorem

Theorem
If (y1, λ1) and (y2, λ2) are eigenpairs and λ1 6= λ2 then
(y1|y2)r = 0.

Proof.

(Ly1|y2) = (y1|Ly2)

(−λ1ry1|y2) = (y1| − λ2ry2)

λ1

∫ b

a
y1y2rdx = λ2

∫ b

a
y1y2rdx

λ1(y1|y2)r = λ2(y1|y2)r

(y1|y2)r = 0

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Legendre Polynomials - Orthogonality

Recall the Legendre differential equation

(1− x2)y ′′ − 2xy ′ + n(n + 1)y = 0.

So
Ly = ((1− x2)y ′)′

λ = n(n + 1)

r(x) = 1.

We want L to be self-adjoint, so we must determine necessary
boundary conditions.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Sturm-Liouville Problem - Legendre

For any two functions f ,g ∈ C[−1,1], by the general theory, we
get ∫ 1

−1
Lf (x)g(x)− f (x)Lg(x)dx

=

∫ 1

−1
((1− x2)f ′)′g(x)− f (x)((1− x2)g′)′dx

= [(1− x2)(f ′g − g′f )]1−1
= 0.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Legendre Polynomials - Orthogonality

Because (1− x2) = 0 when x = −1,1 we know that L is
self-adjoint on C[−1,1].Hence we know that the Legendre
polynomials are orthogonal by the orthogonality theorem stated
earlier.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.



General Orthogonality
Legendre Polynomials

Sturm-Liouville
Conclusion

Hermite Polynomials

For a Hermite Polynomial, we begin with the differential
equation

y ′′ − 2xy ′ + 2ny = 0

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Hermite Orthogonality

First, we need to arrange the differential equation so it can be
written in the form

(p(x)y ′)′ + (q(x) + λr(x))y = 0.

We must find some r(x) by which we will multiply the equation.
For the Hermite differential equation, we use r(x) = e−x2

to get

(e−x2
y ′)′ + 2ne−x2

y = 0

=⇒ e−x2
y ′′ − 2xe−x2

y ′ + 2ne−x2
y = 0

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Hermite Orthogonality

Sturm-Liouville problems can be written in the form

Ly + λr(x)y = 0.

In our case, Ly = (e−x2
y ′)′ and λr(x) = 2ne−x2

y .

0 = (Lf |g)− (f |Lg) =
∫ ∞
−∞

Lf (x)g(x)− f (x)Lg(x)dx

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Hermite Orthogonality

So we get from the general theory that∫ ∞
−∞

(e−x2
f ′(x))′g(x)− f (x)(e−x2

g′(x))′dx

=

∫ ∞
−∞

[(e−x2
)(f ′(x)g(x)− g′(x)f (x))]′dx

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Hermite Orthogonality

With further manipulation we obtain

lim
a→−∞

[(e−x2
)(f ′(x)g(x)− g′(x)f (x))]0a

+ lim
b→∞

[(e−x2
)(f ′(x)g(x)− g′(x)f (x))]b0

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Hermite Orthogonality

We want
lim

x→±∞
e−x2

f (x)g′(x) = 0

for all f ,g ∈ BC2(−∞,∞). So we impose the following
conditions on the space of functions we consider

lim
x→±∞

e−x2/2h(x) = 0

and
lim

x→±∞
e−x2/2h′(x) = 0

for all h ∈ C2(−∞,∞).

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Conclusion

Let φ1(x),φ2(x),...,φn(x),... be an system of orthogonal,
real functions on the interval [a,b].
Let f (x) be a function defined on the interval [a,b].

Assume that
∫ b

a φ
2
n(x) 6= 0.

Suppose that f (x) can be represented as a series of the
above orthogonal system. That is
f (x) = c0φ0(x) + c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) + · · ·

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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Conclusion

Multiplying f (x) by φn(x) to get
f (x)φn(x) = c0φ0(x)φn(x) + c1φ1(x)φn(x) +
c2φ2(x)φn(x) + · · ·+ cnφ

2
n(x) + cn+1φn+1(x)φn+1(x) + · · ·∫ b

a f (x)φn(x)dx = cn
∫ b

a φ
2
n(x)dx

Therefore cn =
∫ b

a f (x)φn(x)dx∫ b
a φ

2
n(x)dx

are called the Fourier

coefficients of f (x) with respect to the orthogonal system.
The corresponding Fourier series is called the Fourier
series of f(x) with respect to the orthogonal system.
We may test whether this series converges or diverges.

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.
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