Orthogonal Functions: The Legendre, Laguerre, and Hermite Polynomials

Thomas Coverson ${ }^{1}$ Savarnik Dixit ${ }^{3}$ Tyler Otto ${ }^{3}$
${ }^{1}$ Department of Mathematics Morehouse College
${ }^{2}$ Department of Mathematics
University of Texas at Austin
${ }^{3}$ Department of Mathematics Louisiana State University

Outline

(1) General Orthogonality
(2) Legendre Polynomials
(3) Sturm-Liouville
4. Conclusion

Overview

When discussed in \mathbb{R}^{2}, vectors are said to be orthogonal when the dot product is equal to 0 .

$$
\hat{w} \cdot \hat{v}=w_{1} v_{1}+w_{2} v_{2}=0
$$

Overview

Definition

We define an inner product $\left(y_{1} \mid y_{2}\right)=\int_{a}^{b} y_{1}(x) \overline{y_{2}(x)} d x$ where $y_{1}, y_{2} \in C^{2}[a, b]$.

Definition

Two functions are said to be orthogonal if $\left(y_{1} \mid y_{2}\right)=0$.

Definition

A linear operator L is self-adjoint if $\left(L y_{1} \mid y_{2}\right)=\left(y_{1} \mid L y_{2}\right)$ for all y_{1}, y_{2}.

Trigonometric Functions and Fourier Series

- Orthogonality of the Sine and Cosine Functions
- Expansion of the Fourier Series

$$
f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

Legendre Polynomials

Legendre Polynomials are usually derived from differential equations of the following form:

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

We solve this equation using the standard power series method.

Legendre Polynomials

Suppose y is analytic. Then we have

$$
\begin{gathered}
y(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \\
y^{\prime}(x)=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k} \\
y^{\prime \prime}(x)=\sum_{k=0}^{\infty} a_{k+2}(k+1)(k+2) x^{k}
\end{gathered}
$$

Recursion Formula

After implementing the power series method, the following recursion relation is obtained.

$$
\begin{gathered}
a_{k+2}(k+2)(k+1)-a_{k}(k)(k-1)-2 a_{k}(k)-n(n+1) a_{k}=0 \\
a_{k+2}=\frac{a_{k}[k(k+1)-n(n+1)]}{(k+2)(k+1)}
\end{gathered}
$$

Using this equation, we get the coefficients for the Legendre polynomial solutions.

Legendre Polynomials

$$
\begin{gathered}
L_{0}(x)=1 \\
L_{1}(x)=x \\
L_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\
L_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
L_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
L_{5}(x)=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
\end{gathered}
$$

Legendre Graph

Figure: Legendre Graph

Sturm-Liouville

A Sturm-Liouville equation is a second-order linear differential equation of the form

$$
\begin{gathered}
\left(p(x) y^{\prime}\right)^{\prime}+q(x) y+\lambda r(x) y=0 \\
p(x) y^{\prime \prime}+p^{\prime}(x) y^{\prime}+q(x) y+\lambda r(x) y=0
\end{gathered}
$$

which allows us to find solutions that form an orthogonal system.

Sturm-Liouville cont.

We can define a linear operator by

$$
L y=\left(p(x) y^{\prime}\right)^{\prime}+q(x) y
$$

which gives the equation

$$
L y+\lambda r(x) y=0
$$

Self-adjointness

To obtain orthogonality, we want L to be self-adjoint.

$$
\left(L y_{1} \mid y_{2}\right)=\left(y_{1} \mid L y_{2}\right)
$$

which implies

$$
\begin{gathered}
0=\left(L y_{1} \mid y_{2}\right)-\left(y_{1} \mid L y_{2}\right) \\
=\left(\left(p y_{1}^{\prime}\right)^{\prime}+q y_{1} \mid y_{2}\right)-\left(y_{1} \mid\left(p y_{2}^{\prime}\right)^{\prime}+q y_{2}\right) \\
=\int_{a}^{b}\left(p^{\prime} y_{1}^{\prime} \overline{y_{2}}+p y_{1}^{\prime \prime} \overline{y_{2}}+q y_{1} \overline{y_{2}}-y_{1} p^{\prime} \overline{y_{2}^{\prime}}-y_{1} p \overline{y_{2}^{\prime \prime}}-y_{1} \overline{q_{1} y_{2}}\right) d x
\end{gathered}
$$

Self-adjointness

$$
\begin{gathered}
=\int_{a}^{b}\left(p^{\prime} y_{1}^{\prime} \overline{y_{2}}+p y_{1}^{\prime \prime} \overline{y_{2}}-y_{1} p^{\prime} \overline{y_{2}^{\prime}}-y_{1} p \overline{y_{2}^{\prime \prime}}\right) d x \\
=\int_{a}^{b}\left[p\left(y_{1}^{\prime} \overline{y_{2}}-\overline{y_{2}^{\prime}} y_{1}\right)\right]^{\prime} d x \\
=p(b)\left(y_{1}^{\prime}(b) \overline{y_{2}}(b)-\overline{y_{2}^{\prime}}(b) y_{1}(b)\right)-p(a)\left(y_{1}(a) \overline{y_{2}}(a)-\overline{y_{2}^{\prime}}(a) y_{1}(a)\right)
\end{gathered}
$$

Orthogonality Theorem

Theorem

If $\left(y_{1}, \lambda_{1}\right)$ and $\left(y_{2}, \lambda_{2}\right)$ are eigenpairs and $\lambda_{1} \neq \lambda_{2}$ then $\left(y_{1} \mid y_{2}\right)_{r}=0$.

Proof.

$$
\begin{aligned}
&\left(L y_{1} \mid y_{2}\right)=\left(y_{1} \mid L y_{2}\right) \\
&\left(-\lambda_{1} r y_{1} \mid y_{2}\right)=\left(y_{1} \mid-\lambda_{2} r y_{2}\right) \\
& \lambda_{1} \int_{a}^{b} y_{1} \overline{y_{2}} r d x=\lambda_{2} \int_{a}^{b} y_{1} \overline{y_{2}} r d x \\
& \lambda_{1}\left(y_{1} \mid y_{2}\right)_{r}=\lambda_{2}\left(y_{1} \mid y_{2}\right)_{r} \\
&\left(y_{1} \mid y_{2}\right)_{r}=0
\end{aligned}
$$

Legendre Polynomials - Orthogonality

Recall the Legendre differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

So

$$
\begin{gathered}
L y=\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime} \\
\lambda=n(n+1) \\
r(x)=1
\end{gathered}
$$

We want L to be self-adjoint, so we must determine necessary boundary conditions.

Sturm-Liouville Problem - Legendre

For any two functions $f, g \in C[-1,1]$, by the general theory, we get

$$
\begin{aligned}
& \int_{-1}^{1} L f(x) g(x)-f(x) L g(x) d x \\
& =\int_{-1}^{1}\left(\left(1-x^{2}\right) f^{\prime}\right)^{\prime} g(x)-f(x)\left(\left(1-x^{2}\right) g^{\prime}\right)^{\prime} d x \\
& =\left[\left(1-x^{2}\right)\left(f^{\prime} g-g^{\prime} f\right)\right]_{-1}^{1} \\
& =0 .
\end{aligned}
$$

Legendre Polynomials - Orthogonality

Because $\left(1-x^{2}\right)=0$ when $x=-1,1$ we know that L is self-adjoint on $C[-1,1]$. Hence we know that the Legendre polynomials are orthogonal by the orthogonality theorem stated earlier.

Hermite Polynomials

For a Hermite Polynomial, we begin with the differential equation

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0
$$

Hermite Orthogonality

First, we need to arrange the differential equation so it can be written in the form

$$
\left(p(x) y^{\prime}\right)^{\prime}+(q(x)+\lambda r(x)) y=0
$$

We must find some $r(x)$ by which we will multiply the equation.
For the Hermite differential equation, we use $r(x)=e^{-x^{2}}$ to get

$$
\begin{aligned}
\left(e^{-x^{2}} y^{\prime}\right)^{\prime}+2 n e^{-x^{2}} y & =0 \\
\Longrightarrow e^{-x^{2}} y^{\prime \prime}-2 x e^{-x^{2}} y^{\prime}+2 n e^{-x^{2}} y & =0
\end{aligned}
$$

Hermite Orthogonality

Sturm-Liouville problems can be written in the form

$$
L y+\lambda r(x) y=0
$$

In our case, $L y=\left(e^{-x^{2}} y^{\prime}\right)^{\prime}$ and $\lambda r(x)=2 n e^{-x^{2}} y$.

$$
0=(L f \mid g)-(f \mid L g)=\int_{-\infty}^{\infty} L f(x) g(x)-f(x) L g(x) d x
$$

Hermite Orthogonality

So we get from the general theory that

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left(e^{-x^{2}} f^{\prime}(x)\right)^{\prime} g(x)-f(x)\left(e^{-x^{2}} g^{\prime}(x)\right)^{\prime} d x \\
& =\int_{-\infty}^{\infty}\left[\left(e^{-x^{2}}\right)\left(f^{\prime}(x) g(x)-g^{\prime}(x) f(x)\right)\right]^{\prime} d x
\end{aligned}
$$

Hermite Orthogonality

With further manipulation we obtain

$$
\begin{aligned}
& \lim _{a \rightarrow-\infty}\left[\left(e^{-x^{2}}\right)\left(f^{\prime}(x) g(x)-g^{\prime}(x) f(x)\right)\right]_{a}^{0} \\
& +\lim _{b \rightarrow \infty}\left[\left(e^{-x^{2}}\right)\left(f^{\prime}(x) g(x)-g^{\prime}(x) f(x)\right)\right]_{0}^{b}
\end{aligned}
$$

Hermite Orthogonality

We want

$$
\lim _{x \rightarrow \pm \infty} e^{-x^{2}} f(x) g^{\prime}(x)=0
$$

for all $f, g \in B C^{2}(-\infty, \infty)$. So we impose the following conditions on the space of functions we consider

$$
\lim _{x \rightarrow \pm \infty} e^{-x^{2} / 2} h(x)=0
$$

and

$$
\lim _{x \rightarrow \pm \infty} e^{-x^{2} / 2} h^{\prime}(x)=0
$$

for all $h \in C^{2}(-\infty, \infty)$.

Conclusion

- Let $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x), \ldots$ be an system of orthogonal, real functions on the interval $[a, b]$.
- Let $f(x)$ be a function defined on the interval [a,b].
- Assume that $\int_{a}^{b} \phi_{n}^{2}(x) \neq 0$.
- Suppose that $f(x)$ can be represented as a series of the above orthogonal system. That is

$$
f(x)=c_{0} \phi_{0}(x)+c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+\cdots+c_{n} \phi_{n}(x)+\cdots
$$

Conclusion

- Multiplying $f(x)$ by $\phi_{n}(x)$ to get
$f(x) \phi_{n}(x)=c_{0} \phi_{0}(x) \phi_{n}(x)+c_{1} \phi_{1}(x) \phi_{n}(x)+$
$c_{2} \phi_{2}(x) \phi_{n}(x)+\cdots+c_{n} \phi_{n}^{2}(x)+c_{n+1} \phi_{n+1}(x) \phi_{n+1}(x)+\cdots$
- $\int_{a}^{b} f(x) \phi_{n}(x) d x=c_{n} \int_{a}^{b} \phi_{n}^{2}(x) d x$
- Therefore $c_{n}=\frac{\int_{a}^{b} f(x) \phi_{n}(x) d x}{\int_{a}^{b} \phi_{n}^{2}(x) d x}$ are called the Fourier coefficients of $f(x)$ with respect to the orthogonal system.
- The corresponding Fourier series is called the Fourier series of $f(x)$ with respect to the orthogonal system.
- We may test whether this series converges or diverges.

