Orthogonal Functions: The Legendre, Laguerre, and Hermite Polynomials

Thomas Coverson¹ Savarnik Dixit³ Alysha Harbour² Tyler Otto³

¹Department of Mathematics Morehouse College

²Department of Mathematics University of Texas at Austin

³Department of Mathematics Louisiana State University

SMILE REU Summer 2010

Coverson, Dixit, Harbour, Otto

Orth.Funct. Leg., Lag. Hermite.

Outline

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

イロン 不得 とくほ とくほとう

When discussed in \mathbb{R}^2 , vectors are said to be orthogonal when the dot product is equal to 0.

$$\hat{w}\cdot\hat{v}=w_1v_1+w_2v_2=0.$$

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

ヘロト ヘアト ヘビト ヘビト

Overview

Definition

We define an inner product $(y_1|y_2) = \int_a^b y_1(x)\overline{y_2(x)}dx$ where $y_1, y_2 \in C^2[a, b]$.

Definition

Two functions are said to be **orthogonal** if $(y_1|y_2) = 0$.

Definition

A linear operator L is **self-adjoint** if $(Ly_1|y_2) = (y_1|Ly_2)$ for all y_1, y_2 .

イロト 不得 とくほと くほとう

Trigonometric Functions and Fourier Series

- Orthogonality of the Sine and Cosine Functions
- Expansion of the Fourier Series

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Legendre Polynomials

Legendre Polynomials are usually derived from differential equations of the following form:

$$(1-x^2)y''-2xy'+n(n+1)y=0$$

We solve this equation using the standard power series method.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Legendre Polynomials

Suppose y is analytic. Then we have

$$y(x)=\sum_{k=0}^{\infty}a_kx^k$$

$$y'(x) = \sum_{k=0}^{\infty} a_{k+1}(k+1)x^k$$

-

$$y''(x) = \sum_{k=0}^{\infty} a_{k+2}(k+1)(k+2)x^k$$

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

イロト 不得 とくほ とくほとう

ъ

Recursion Formula

After implementing the power series method, the following recursion relation is obtained.

$$a_{k+2}(k+2)(k+1) - a_k(k)(k-1) - 2a_k(k) - n(n+1)a_k = 0$$
$$a_{k+2} = \frac{a_k[k(k+1) - n(n+1)]}{(k+2)(k+1)}$$

Using this equation, we get the coefficients for the Legendre polynomial solutions.

ヘロト ヘアト ヘビト ヘビト

Legendre Polynomials

$$L_0(x) = 1$$

$$L_1(x) = x$$

$$L_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$L_3(x) = \frac{1}{2}(5x^3 - 3x)$$

$$L_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$$

$$L_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$$

ヘロト 人間 とくほとくほとう

Legendre Graph

Figure: Legendre Graph

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

<ロト <回 > < 注 > < 注 > 、

æ

Sturm-Liouville

A Sturm-Liouville equation is a second-order linear differential equation of the form

$$(p(x)y')' + q(x)y + \lambda r(x)y = 0$$
$$p(x)y'' + p'(x)y' + q(x)y + \lambda r(x)y = 0$$

which allows us to find solutions that form an orthogonal system.

ヘロト ヘアト ヘビト ヘビト

Sturm-Liouville cont.

We can define a linear operator by

$$Ly = (p(x)y')' + q(x)y$$

which gives the equation

 $Ly + \lambda r(x)y = 0.$

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

ヘロト 人間 とくほとくほとう

∃ <2 <</p>

Self-adjointness

To obtain orthogonality, we want L to be self-adjoint.

$$(Ly_1|y_2) = (y_1|Ly_2)$$

which implies

$$0 = (Ly_1|y_2) - (y_1|Ly_2)$$

$$= ((py'_1)' + qy_1|y_2) - (y_1|(py'_2)' + qy_2)$$

$$=\int_{a}^{b}(p'y_{1}'\overline{y_{2}}+py_{1}''\overline{y_{2}}+qy_{1}\overline{y_{2}}-y_{1}p'\overline{y_{2}'}-y_{1}p\overline{y_{2}''}-y_{1}\overline{q_{1}y_{2}})dx$$

ヘロト 人間 ト ヘヨト ヘヨト

Self-adjointness

$$= \int_{a}^{b} (p'y_{1}'\overline{y_{2}} + py_{1}''\overline{y_{2}} - y_{1}p'\overline{y_{2}'} - y_{1}p\overline{y_{2}''})dx$$
$$= \int_{a}^{b} [p(y_{1}'\overline{y_{2}} - \overline{y_{2}'}y_{1})]'dx$$
$$= p(b)(y_{1}'(b)\overline{y_{2}}(b) - \overline{y_{2}'}(b)y_{1}(b)) - p(a)(y_{1}(a)\overline{y_{2}}(a) - \overline{y_{2}'}(a)y_{1}(a))$$

ヘロト 人間 とくほとくほとう

Orthogonality Theorem

Theorem

If (y_1, λ_1) and (y_2, λ_2) are eigenpairs and $\lambda_1 \neq \lambda_2$ then $(y_1|y_2)_r = 0$.

Proof.

$$(Ly_1|y_2) = (y_1|Ly_2)$$
$$(-\lambda_1 ry_1|y_2) = (y_1| - \lambda_2 ry_2)$$
$$\lambda_1 \int_a^b y_1 \overline{y_2} r dx = \lambda_2 \int_a^b y_1 \overline{y_2} r dx$$
$$\lambda_1 (y_1|y_2)_r = \lambda_2 (y_1|y_2)_r$$
$$(y_1|y_2)_r = 0$$

Legendre Polynomials - Orthogonality

Recall the Legendre differential equation

$$(1-x^2)y''-2xy'+n(n+1)y=0.$$

So

$$Ly = ((1 - x^2)y')'$$
$$\lambda = n(n+1)$$
$$r(x) = 1.$$

We want *L* to be self-adjoint, so we must determine necessary boundary conditions.

ヘロト 人間 とくほとくほとう

æ

Sturm-Liouville Problem - Legendre

For any two functions $f, g \in C[-1, 1]$, by the general theory, we get

$$\int_{-1}^{1} Lf(x)g(x) - f(x)Lg(x)dx$$

= $\int_{-1}^{1} ((1 - x^2)f')'g(x) - f(x)((1 - x^2)g')'dx$
= $[(1 - x^2)(f'g - g'f)]_{-1}^{1}$
= 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Legendre Polynomials - Orthogonality

Because $(1 - x^2) = 0$ when x = -1, 1 we know that *L* is self-adjoint on C[-1, 1]. Hence we know that the Legendre polynomials are orthogonal by the orthogonality theorem stated earlier.

イロト 不得 とくほ とくほ とう

ъ

Hermite Polynomials

For a Hermite Polynomial, we begin with the differential equation

$$y''-2xy'+2ny=0$$

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

ヘロト 人間 とくほとくほとう

Hermite Orthogonality

First, we need to arrange the differential equation so it can be written in the form

$$(p(x)y')' + (q(x) + \lambda r(x))y = 0.$$

We must find some r(x) by which we will multiply the equation. For the Hermite differential equation, we use $r(x) = e^{-x^2}$ to get

$$(e^{-x^{2}}y')' + 2ne^{-x^{2}}y = 0$$

$$\implies e^{-x^{2}}y'' - 2xe^{-x^{2}}y' + 2ne^{-x^{2}}y = 0$$

・ロン ・ 同 と ・ ヨ と ・ ヨ と

Hermite Orthogonality

Sturm-Liouville problems can be written in the form

$$Ly + \lambda r(x)y = 0.$$

In our case, $Ly = (e^{-x^2}y')'$ and $\lambda r(x) = 2ne^{-x^2}y$.

$$0 = (Lf|g) - (f|Lg) = \int_{-\infty}^{\infty} Lf(x)g(x) - f(x)Lg(x)dx$$

<ロ> (四) (四) (三) (三) (三)

Hermite Orthogonality

So we get from the general theory that

$$\int_{-\infty}^{\infty} (e^{-x^2} f'(x))' g(x) - f(x) (e^{-x^2} g'(x))' dx$$
$$= \int_{-\infty}^{\infty} [(e^{-x^2})(f'(x)g(x) - g'(x)f(x))]' dx$$

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

イロン イボン イヨン イヨン

Hermite Orthogonality

With further manipulation we obtain

$$\lim_{a \to -\infty} [(e^{-x^2})(f'(x)g(x) - g'(x)f(x))]_a^0 + \lim_{b \to \infty} [(e^{-x^2})(f'(x)g(x) - g'(x)f(x))]_0^b$$

Coverson, Dixit, Harbour, Otto Orth.Funct. Leg., Lag. Hermite.

イロン 不同 とくほう イヨン

Hermite Orthogonality

We want

$$\lim_{x\to\pm\infty}e^{-x^2}f(x)g'(x)=0$$

for all $f, g \in BC^2(-\infty, \infty)$. So we impose the following conditions on the space of functions we consider

$$\lim_{x\to\pm\infty}e^{-x^2/2}h(x)=0$$

and

$$\lim_{x\to\pm\infty}e^{-x^2/2}h'(x)=0$$

for all $h \in C^2(-\infty, \infty)$.

ヘロト ヘアト ヘビト ヘビト

æ

Conclusion

- Let φ₁(x),φ₂(x),...,φ_n(x),... be an system of orthogonal, real functions on the interval [a, b].
- Let *f*(*x*) be a function defined on the interval [a,b].
- Assume that $\int_a^b \phi_n^2(x) \neq 0$.
- Suppose that f(x) can be represented as a series of the above orthogonal system. That is
 f(x) = c₀φ₀(x) + c₁φ₁(x) + c₂φ₂(x) + ··· + c_nφ_n(x) + ···

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conclusion

• Multiplying f(x) by $\phi_n(x)$ to get $f(x)\phi_n(x) = c_0\phi_0(x)\phi_n(x) + c_1\phi_1(x)\phi_n(x) + c_2\phi_2(x)\phi_n(x) + \dots + c_n\phi_n^2(x) + c_{n+1}\phi_{n+1}(x)\phi_{n+1}(x) + \dots$

•
$$\int_a^b f(x)\phi_n(x)dx = c_n \int_a^b \phi_n^2(x)dx$$

- Therefore $c_n = \frac{\int_a^b f(x)\phi_n(x)dx}{\int_a^b \phi_n^2(x)dx}$ are called the Fourier coefficients of f(x) with respect to the orthogonal system.
- The corresponding Fourier series is called the Fourier series of f(x) with respect to the orthogonal system.
- We may test whether this series converges or diverges.

・ロト ・ 理 ト ・ ヨ ト ・