Bessel's Function A Touch of Magic

Fayez Karoji¹ Casey Tsai¹ Rachel Weyrens²

¹Department of Mathematics Louisiana State University

²Department of Mathematics University of Arkansas

SMILE REU Summer 2010

・ロト ・ 理 ト ・ ヨ ト ・

Outline

Introduction

Bessel Functions Terminology

Application Drum Example

Properties Orthogonality

<ロト <回 > < 注 > < 注 > 、

ъ

Bessel Functions Terminology

General Form

Bessel's differential equation is

$$x^{2}y'' + xy' + (x^{2} - n^{2})y = 0$$

Karoji, Tsai, Weyrens Bessel Functions

(日) (四) (注) (注) (注)

Bessel Functions Terminology

General Form

Bessel's differential equation is

$$x^2y'' + xy' + (x^2 - n^2)y = 0$$

The linearly independent solutions are J_n and Y_n .

Bessel Functions Terminology

General Form

Bessel's differential equation is

$$x^2y'' + xy' + (x^2 - n^2)y = 0$$

The linearly independent solutions are J_n and Y_n . The zeros are j_n and y_n .

Bessel Functions Terminology

Bessel Functions of Order Zero

/Bessel/j0.pdf

Figure: Bessel Function of the First Kind, J_0

Karoji, Tsai, Weyrens Bessel Functions

Bessel Functions Terminology

Bessel Functions of Order Zero

/Bessel/y0.pdf

Figure: Bessel Function of the Second Kind, Y_0

Karoji, Tsai, Weyrens Bessel Functions

Bessel Functions Terminology

Key Terms

Separation of variables

Karoji, Tsai, Weyrens Bessel Functions

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Bessel Functions Terminology

Key Terms

- Separation of variables
- Regular singular

Karoji, Tsai, Weyrens Bessel Functions

Bessel Functions Terminology

Key Terms

- Separation of variables
- Regular singular
- Superposition

Drum Example

Physical Description

Radially symmetric

Karoji, Tsai, Weyrens Bessel Functions

Drum Example

Physical Description

- Radially symmetric
- Radius r = 1

Drum Example

Physical Description

- Radially symmetric
- Radius r = 1
- Beginning at rest

Drum Example

Physical Description

- Radially symmetric
- Radius r = 1
- Beginning at rest
- Edges fixed

Drum Example

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

Karoji, Tsai, Weyrens Bessel Functions

イロト 不得 とくほと くほとう

Drum Example

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

$$\bullet \quad U_{tt} = U_{rr} + \frac{1}{r}U_r$$

イロト 不得 とくほと くほとう

Drum Example

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

•
$$u_{tt} = u_{rr} + \frac{1}{r}u_r$$

• $u(r, 0) = f(r)$

イロン 不得 とくほ とくほう 一日

Drum Example

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

•
$$u_{tt} = u_{rr} + \frac{1}{r}u_r$$

$$\blacktriangleright u(r,0) = f(r)$$

•
$$u_t(r, 0) = 0$$

イロト 不得 とくほ とくほとう

Drum Example

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

•
$$u_{tt} = u_{rr} + \frac{1}{r}u_r$$

$$\blacktriangleright u(r,0) = f(r)$$

•
$$u_t(r, 0) = 0$$

•
$$u(1,t) = 0$$

イロト 不得 とくほと くほとう

Drum Example

Separation of Variables

We have

$$u(r,t)=R(r)T(t)$$

•
$$T'' + \mu T = 0$$

• $R'' + \frac{1}{r}R' + \mu R = 0$

ヘロト 人間 とくほとくほとう

æ

Drum Example

Separation of Variables

We have

$$u(r,t)=R(r)T(t)$$

ヘロト 人間 とくほとくほとう

æ

Drum Example

Solutions

The solutions of the given ODE's are

Karoji, Tsai, Weyrens Bessel Functions

Solutions

The solutions of the given ODE's are

$$T(t) = c_1 \cos(\alpha t) + c_2 \sin(\alpha t)$$

ヘロト 人間 とくほとくほとう

Э.

Drum Example

Solutions

The solutions of the given ODE's are

$$T(t) = c_1 \cos(\alpha t) + c_2 \sin(\alpha t)$$

$$\triangleright R(r) = c_3 J_0(\alpha r) + c_4 Y_0(\alpha r)$$

Karoji, Tsai, Weyrens Bessel Functions

Evaluation

Using initial and boundary conditions, we have

$$u_n(r,t) = A_n J_0(j_n r) \cos(j_n t)$$

Karoji, Tsai, Weyrens Bessel Functions

ヘロト 人間 とくほとくほとう

Evaluation

Using initial and boundary conditions, we have

$$u_n(r,t) = A_n J_0(j_n r) \cos(j_n t)$$

General solution

ヘロト 人間 とくほとくほとう

Evaluation

Using initial and boundary conditions, we have

 $u_n(r,t) = A_n J_0(j_n r) \cos(j_n t)$

General solution

$$u(r,t) = \sum_{n=1}^{\infty} A_n J_0(j_n r) \cos(j_n t)$$

イロト 不得 とくほ とくほとう

Drum Example

Amplitude

The amplitude of displacement, from u(r, 0) = f(r) is:

Karoji, Tsai, Weyrens Bessel Functions

(日) (四) (注) (注) (注)

Drum Example

Amplitude

The amplitude of displacement, from u(r, 0) = f(r) is:

$$A_n = \frac{\int_0^1 r J_0(j_n r) f(r) dr}{\int_0^1 r J_0(j_n r) J_0(j_n r) dr}$$

Karoji, Tsai, Weyrens Bessel Functions

(日) (四) (王) (王) (王)

Drum Example

Frequencies

Fundamental pitch	<u>j΄1</u> 2π
First overtone	<u>j2</u> 2π
Second overtone	<u>j</u> 3 2π

Karoji, Tsai, Weyrens Bessel Functions

(日) (四) (王) (王) (王)

Orthogonality

Orthogonality Property of Bessel Functions

/Bessel/jnspdf.pdf

イロン 不得 とくほ とくほう 一日

Figure: Bessel Functions of the First Kind

Orthogonality

Problems in Mathematical Physics

- PDE's model physical phenomena.
- Example: Steady Temperatures in Circular Cylinder (Laplacian in Cylindrical Coordinates).
- Example: The Vibrating Drumhead (Wave Equation in Polar Coordinates).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Orthogonality

Methods of Solution

- PDE's are difficult to solve.
- Fourier's Method: Linear and homogeneous PDE's with homogeneous boundary conditions.
- Also known as Separation of Variables.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Orthogonality

Fourier's Method: PDE \longrightarrow ODE's

- PDE: Wave Equation in Polar Coordinates
- Apply Fourier's Method
- Two second order ODE's
 - Simple Harmonic Motion $T'' + \mu T = 0$
 - Bessel's Equation $R'' + \frac{1}{r}R' + R = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Orthogonality

Orthogonal Functions

- Analysis of solutions to ODE's
- Underlying Theme: Orthogonal Functions
- Examples:
 - Sine and Cosine Functions
 - Legendre Polynomials (Special Function)
 - Bessel Functions (A "Very" Special Function)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Orthogonality

What is Orthogonality?

• Dot Product or Inner Product in \mathbb{R}^n

Karoji, Tsai, Weyrens Bessel Functions

Orthogonality

What is Orthogonality?

• Dot Product or Inner Product in \mathbb{R}^n

• Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Karoji, Tsai, Weyrens Bessel Functions

Orthogonality

What is Orthogonality?

- Dot Product or Inner Product in \mathbb{R}^n
- Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Define $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Orthogonality

What is Orthogonality?

- Dot Product or Inner Product in \mathbb{R}^n
- Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Define $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$
- **x** and **y** are orthogonal when $\sum_{i=1}^{n} x_i y_i = 0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Orthogonality

Generalize Orthogonality

▶ Inner Product in *R*[*a*, *b*]

Karoji, Tsai, Weyrens Bessel Functions

<ロ> (四) (四) (注) (三) (三)

Orthogonality

Generalize Orthogonality

- Inner Product in R[a, b]
- ▶ Given *f*, *g* ∈ *R*[*a*, *b*]

<ロ> (四) (四) (注) (三) (三)

Orthogonality

Generalize Orthogonality

- Inner Product in R[a, b]
- ▶ Given *f*, *g* ∈ *R*[*a*, *b*]
- Define $\langle f, g \rangle = \int_a^b f(x)g(x) \, dx$

イロン 不得 とくほ とくほ とうほ

Orthogonality

Generalize Orthogonality

- Inner Product in R[a, b]
- ▶ Given *f*, *g* ∈ *R*[*a*, *b*]
- Define $\langle f, g \rangle = \int_a^b f(x)g(x) \, dx$
- f and g are orthogonal when $\int_a^b f(x)g(x) dx = 0$

イロン 不得 とくほ とくほう 一日

Orthogonality

Example: Simple Harmonic Motion

• Consider
$$T'' + n^2 T = 0$$
, $(\mu = n^2)$

Karoji, Tsai, Weyrens Bessel Functions

<ロ> (四) (四) (三) (三) (三)

Orthogonality

Example: Simple Harmonic Motion

- Consider $T'' + n^2 T = 0$, $(\mu = n^2)$
- Solutions are sin(nx) and cos(nx)

イロン 不得 とくほ とくほう 一日

Orthogonality

Example: Simple Harmonic Motion

- Consider $T'' + n^2 T = 0$, $(\mu = n^2)$
- Solutions are sin(nx) and cos(nx)
- ► Easy to show that $\int_{-\pi}^{\pi} \sin(mx) \cos(nx) dx = 0$ for any $n, m \in \mathbb{Z}$

Orthogonality

Example: Legendre Polynomials

▶ It was shown that the Legendre Polynomials satisfy $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$ for $n, m \in \mathbb{Z}, n \neq m$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Orthogonality

Example: Bessel Functions

• Orthogonality property of $J_n(\lambda x)$ and $J_n(\mu x)$

Karoji, Tsai, Weyrens Bessel Functions

<ロ> (四) (四) (三) (三) (三)

Orthogonality

Example: Bessel Functions

- Orthogonality property of $J_n(\lambda x)$ and $J_n(\mu x)$
- Bessel Functions of the First Kind of Order n

イロト 不得 とくほと くほとう

Orthogonality

Example: Bessel Functions

- Orthogonality property of $J_n(\lambda x)$ and $J_n(\mu x)$
- Bessel Functions of the First Kind of Order n
- λ and μ are distinct positive roots of $J_n(x) = 0$

イロン 不得 とくほ とくほう 一日

Orthogonality

Example: Bessel Functions

- Orthogonality property of $J_n(\lambda x)$ and $J_n(\mu x)$
- Bessel Functions of the First Kind of Order n
- λ and μ are distinct positive roots of $J_n(x) = 0$
- Will show: $\int_0^1 x J_n(\lambda x) J_n(\mu x) dx = 0$

(日)

Orthogonality

Theorem

Theorem If λ and μ are distinct positive roots of $J_n(x) = 0$ then

$$\int_0^1 x J_n(\lambda x) J_n(\mu x) \, dx = \begin{cases} 0, & \text{if } \lambda \neq \mu \\ \frac{1}{2} J_{n+1}^2(\lambda), & \text{if } \lambda = \mu \end{cases}$$

Karoji, Tsai, Weyrens Bessel Functions

Orthogonality

Proof

Proof.

Suppose $\lambda \neq \mu$, then λ and μ are distinct positive roots of $J_n(x) = 0$. Since $J_n(\lambda x)$ and $J_n(\mu x)$ are solutions of the Bessel equation in parametric form, we can write

$$x^2 J_n''(\lambda x) + x J_n(\lambda x) + (\lambda^2 x^2 - n^2) J_n(\lambda x) = 0$$
 (1)

and

$$x^{2}J_{n}^{\prime\prime}(\mu x) + xJ_{n}^{\prime}(\mu x) + (\mu^{2}x^{2} - n^{2})J_{n}(\mu x) = 0$$
 (2)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Equations (1) and (2) may be written in the form

Orthogonality

Proof

$$x\frac{d}{dx}\left[x\frac{d}{dx}J_n(\lambda x)\right] + (\lambda^2 x^2 - n^2)J_n(\lambda x) = 0$$
(3)

and

$$x\frac{d}{dx}\left[x\frac{d}{dx}J_n(\mu x)\right] + (\mu^2 x^2 - n^2)J_n(\mu x) = 0$$
(4)

Multiplying (3) by $\frac{J_n(\mu x)}{x}$ and (4) by $\frac{J_n(\lambda x)}{x}$ we get

Introduction Application **Properties**

Orthogonality

Proof

$$J_n(\mu x)\frac{d}{dx}\left[x\frac{d}{dx}J_n(\lambda x)\right] + \frac{1}{x}(\lambda^2 x^2 - n^2)J_n(\lambda x)J_n(\mu x) = 0 \quad (5)$$

and

$$J_n(\lambda x)\frac{d}{dx}\left[x\frac{d}{dx}J_n(\mu x)\right] + \frac{1}{x}(\mu^2 x^2 - n^2)J_n(\mu x)J_n(\lambda x) = 0 \quad (6)$$

Then subtracting, (5) - (6) we get

Orthogonality

Proof

$$J_{n}(\mu x)\frac{d}{dx}\left[x\frac{d}{dx}J_{n}(\lambda x)\right] - J_{n}(\lambda x)\frac{d}{dx}\left[x\frac{d}{dx}J_{n}(\mu x)\right] + (\lambda^{2} - \mu^{2})xJ_{n}(\lambda x)J_{n}(\mu x) = 0$$
(7)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

With some more manipulation, equation (7) may be written as

Orthogonality

Proof

$$\frac{d}{dx} \left[J_n(\mu x) x \frac{d}{dx} J_n(\lambda x) \right] - \frac{d}{dx} \left[J_n(\lambda x) x \frac{d}{dx} J_n(\mu x) \right] + (\lambda^2 - \mu^2) x J_n(\lambda x) J_n(\mu x) = 0$$
(8)

Finally integrating (8) from 0 to 1 noting that $J_n(\lambda) = J_n(\mu) = 0$, we get

Orthogonality

Proof

$$(\lambda^2 - \mu^2) \int_0^1 x J_n(\lambda x) J_n(\mu x) \, dx = 0$$

And since $\lambda \neq \mu$, then we may divide to get the desired result

$$\int_0^1 x J_n(\lambda x) J_n(\mu x) \, dx = 0 \tag{9}$$

Orthogonality

Coefficients

Theorem

If λ and μ are distinct positive roots of $J_n(x) = 0$ then

$$\int_0^1 x J_n(\lambda x) J_n(\mu x) \, dx = \begin{cases} 0, & \text{if } \lambda \neq \mu \\ \frac{1}{2} J_{n+1}^2(\lambda), & \text{if } \lambda = \mu \end{cases}$$

•
$$\int_0^1 x J_n(\lambda x) J_n(\lambda x) \, dx = \frac{1}{2} J_{n+1}^2(\lambda) \neq 0$$

<ロ> (四) (四) (三) (三) (三)

Orthogonality

Coefficients

Theorem

If λ and μ are distinct positive roots of $J_n(x) = 0$ then

$$\int_0^1 x J_n(\lambda x) J_n(\mu x) \, dx = \begin{cases} 0, & \text{if } \lambda \neq \mu \\ \frac{1}{2} J_{n+1}^2(\lambda), & \text{if } \lambda = \mu \end{cases}$$

$$\int_0^1 x J_n(\lambda x) J_n(\lambda x) \, dx = \frac{1}{2} J_{n+1}^2(\lambda) \neq 0$$

•
$$\int_0^1 r J_0(j_n r) J_0(j_n r) dr = \frac{1}{2} J_1^2(j_n) \neq 0$$

<ロ> (四) (四) (三) (三) (三)

Orthogonality

Coefficients

Theorem

If λ and μ are distinct positive roots of $J_n(x) = 0$ then

$$\int_0^1 x J_n(\lambda x) J_n(\mu x) \, dx = \begin{cases} 0, & \text{if } \lambda \neq \mu \\ \frac{1}{2} J_{n+1}^2(\lambda), & \text{if } \lambda = \mu \end{cases}$$

$$\int_0^1 x J_n(\lambda x) J_n(\lambda x) \, dx = \frac{1}{2} J_{n+1}^2(\lambda) \neq 0$$

•
$$\int_0^1 r J_0(j_n r) J_0(j_n r) dr = \frac{1}{2} J_1^2(j_n) \neq 0$$

•
$$A_n = \frac{\int_0^1 r J_0(j_n r) f(r) dr}{\int_0^1 r J_0(j_n r) J_0(j_n r) dr}$$

イロト 不得 とくほと くほとう

Orthogonality

Thank You!

Karoji, Tsai, Weyrens Bessel

Bessel Functions

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで