Bessel's Function A Touch of Magic

Fayez Karoji ${ }^{1}$ Casey Tsai ${ }^{1}$ Rachel Weyrens ${ }^{2}$
${ }^{1}$ Department of Mathematics
Louisiana State University
${ }^{2}$ Department of Mathematics
University of Arkansas

SMILE REU Summer 2010

Outline

Introduction
Bessel Functions

Terminology

Application
Drum Example

Properties
Orthogonality

General Form

Bessel's differential equation is

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0
$$

General Form

Bessel's differential equation is

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0
$$

The linearly independent solutions are J_{n} and Y_{n}.

General Form

Bessel's differential equation is

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0
$$

The linearly independent solutions are J_{n} and Y_{n}. The zeros are j_{n} and y_{n}.

Bessel Functions of Order Zero

Figure: Bessel Function of the First Kind, J_{0}

Bessel Functions of Order Zero

Figure: Bessel Function of the Second Kind, Y_{0}

Bessel Functions

Key Terms

- Separation of variables

Bessel Functions

Key Terms

- Separation of variables
- Regular singular

Bessel Functions

Key Terms

- Separation of variables
- Regular singular
- Superposition

Physical Description

- Radially symmetric

Physical Description

- Radially symmetric
- Radius $r=1$

Physical Description

- Radially symmetric
- Radius $r=1$
- Beginning at rest

Physical Description

- Radially symmetric
- Radius $r=1$
- Beginning at rest
- Edges fixed

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

- $u_{t t}=u_{r r}+\frac{1}{r} u_{r}$

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

- $u_{t t}=u_{r r}+\frac{1}{r} u_{r}$
- $u(r, 0)=f(r)$

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

- $u_{t t}=u_{r r}+\frac{1}{r} u_{r}$
- $u(r, 0)=f(r)$
- $u_{t}(r, 0)=0$

Boundary Valued Problem

This physical problem can be represented by the following boundary valued problem:

- $u_{t t}=u_{r r}+\frac{1}{r} u_{r}$
- $u(r, 0)=f(r)$
- $u_{t}(r, 0)=0$
- $u(1, t)=0$

Separation of Variables

We have

$$
u(r, t)=R(r) T(t)
$$

- $T^{\prime \prime}+\mu T=0$
- $R^{\prime \prime}+\frac{1}{r} R^{\prime}+\mu R=0$

Separation of Variables

We have

$$
u(r, t)=R(r) T(t)
$$

- $T^{\prime \prime}+\mu T=0$
- $R^{\prime \prime}+\frac{1}{r} R^{\prime}+\mu R=0$
- $\mu=\alpha^{2}>0$

Solutions

The solutions of the given ODE's are

Solutions

The solutions of the given ODE's are

- $T(t)=c_{1} \cos (\alpha t)+c_{2} \sin (\alpha t)$

Solutions

The solutions of the given ODE's are

- $T(t)=c_{1} \cos (\alpha t)+c_{2} \sin (\alpha t)$
- $R(r)=c_{3} J_{0}(\alpha r)+c_{4} Y_{0}(\alpha r)$

Evaluation

Using initial and boundary conditions, we have

$$
u_{n}(r, t)=A_{n} J_{0}\left(j_{n} r\right) \cos \left(j_{n} t\right)
$$

Evaluation

Using initial and boundary conditions, we have

$$
u_{n}(r, t)=A_{n} J_{0}\left(j_{n} r\right) \cos \left(j_{n} t\right)
$$

General solution

Evaluation

Using initial and boundary conditions, we have

$$
u_{n}(r, t)=A_{n} J_{0}\left(j_{n} r\right) \cos \left(j_{n} t\right)
$$

General solution

$$
u(r, t)=\sum_{n=1}^{\infty} A_{n} J_{0}\left(j_{n} r\right) \cos \left(j_{n} t\right)
$$

Amplitude

The amplitude of displacement, from $u(r, 0)=f(r)$ is:

Amplitude

The amplitude of displacement, from $u(r, 0)=f(r)$ is:

$$
A_{n}=\frac{\int_{0}^{1} r J_{0}\left(j_{n} r\right) f(r) d r}{\int_{0}^{1} r J_{0}\left(j_{n} r\right) J_{0}\left(j_{n} r\right) d r}
$$

Frequencies

Fundamental pitch	$\frac{j_{1}}{2 \pi}$
First overtone	$\frac{j_{2}}{2 \pi}$
Second overtone	$\frac{j_{3}}{2 \pi}$

Orthogonality Property of Bessel Functions

Figure: Bessel Functions of the First Kind

Problems in Mathematical Physics

- PDE's model physical phenomena.
- Example: Steady Temperatures in Circular Cylinder (Laplacian in Cylindrical Coordinates).
- Example: The Vibrating Drumhead (Wave Equation in Polar Coordinates).

Methods of Solution

- PDE's are difficult to solve.
- Fourier's Method: Linear and homogeneous PDE's with homogeneous boundary conditions.
- Also known as Separation of Variables.

Fourier's Method: PDE \longrightarrow ODE's

- PDE: Wave Equation in Polar Coordinates
- Apply Fourier's Method
- Two second order ODE's
- Simple Harmonic Motion $T^{\prime \prime}+\mu T=0$
- Bessel's Equation $R^{\prime \prime}+\frac{1}{r} R^{\prime}+R=0$

Orthogonal Functions

- Analysis of solutions to ODE's
- Underlying Theme: Orthogonal Functions
- Examples:
- Sine and Cosine Functions
- Legendre Polynomials (Special Function)
- Bessel Functions (A "Very" Special Function)

What is Orthogonality?

- Dot Product or Inner Product in \mathbb{R}^{n}

What is Orthogonality?

- Dot Product or Inner Product in \mathbb{R}^{n}
- Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$

What is Orthogonality?

- Dot Product or Inner Product in \mathbb{R}^{n}
- Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$
- Define $\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}$

What is Orthogonality?

- Dot Product or Inner Product in \mathbb{R}^{n}
- Given $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$
- Define $\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}$
- \mathbf{x} and \mathbf{y} are orthogonal when $\sum_{i=1}^{n} x_{i} y_{i}=0$

Generalize Orthogonality

- Inner Product in $\mathcal{R}[a, b]$

Generalize Orthogonality

- Inner Product in $\mathcal{R}[a, b]$
- Given $f, g \in \mathcal{R}[a, b]$

Generalize Orthogonality

- Inner Product in $\mathcal{R}[a, b]$
- Given $f, g \in \mathcal{R}[a, b]$
- Define $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$

Generalize Orthogonality

- Inner Product in $\mathcal{R}[a, b]$
- Given $f, g \in \mathcal{R}[a, b]$
- Define $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$
- f and g are orthogonal when $\int_{a}^{b} f(x) g(x) d x=0$

Example: Simple Harmonic Motion

- Consider $T^{\prime \prime}+n^{2} T=0,\left(\mu=n^{2}\right)$

Example: Simple Harmonic Motion

- Consider $T^{\prime \prime}+n^{2} T=0,\left(\mu=n^{2}\right)$
- Solutions are $\sin (n x)$ and $\cos (n x)$

Example: Simple Harmonic Motion

- Consider $T^{\prime \prime}+n^{2} T=0,\left(\mu=n^{2}\right)$
- Solutions are $\sin (n x)$ and $\cos (n x)$
- Easy to show that $\int_{-\pi}^{\pi} \sin (m x) \cos (n x) d x=0$ for any $n, m \in \mathbb{Z}$

Example: Legendre Polynomials

- It was shown that the Legendre Polynomials satisfy

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0 \text { for } n, m \in \mathbb{Z}, n \neq m
$$

Example: Bessel Functions

- Orthogonality property of $J_{n}(\lambda x)$ and $J_{n}(\mu x)$

Example: Bessel Functions

- Orthogonality property of $J_{n}(\lambda x)$ and $J_{n}(\mu x)$
- Bessel Functions of the First Kind of Order n

Example: Bessel Functions

- Orthogonality property of $J_{n}(\lambda x)$ and $J_{n}(\mu x)$
- Bessel Functions of the First Kind of Order n
- λ and μ are distinct positive roots of $J_{n}(x)=0$

Example: Bessel Functions

- Orthogonality property of $J_{n}(\lambda x)$ and $J_{n}(\mu x)$
- Bessel Functions of the First Kind of Order n
- λ and μ are distinct positive roots of $J_{n}(x)=0$
- Will show: $\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x=0$

Theorem

Theorem
If λ and μ are distinct positive roots of $J_{n}(x)=0$ then

$$
\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x= \begin{cases}0, & \text { if } \lambda \neq \mu \\ \frac{1}{2} J_{n+1}^{2}(\lambda), & \text { if } \lambda=\mu\end{cases}
$$

Proof

Proof.

Suppose $\lambda \neq \mu$, then λ and μ are distinct positive roots of $J_{n}(x)=0$. Since $J_{n}(\lambda x)$ and $J_{n}(\mu x)$ are solutions of the Bessel equation in parametric form, we can write

$$
\begin{equation*}
x^{2} J_{n}^{\prime \prime}(\lambda x)+x J_{n}^{\prime}(\lambda x)+\left(\lambda^{2} x^{2}-n^{2}\right) J_{n}(\lambda x)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2} J_{n}^{\prime \prime}(\mu x)+x J_{n}^{\prime}(\mu x)+\left(\mu^{2} x^{2}-n^{2}\right) J_{n}(\mu x)=0 \tag{2}
\end{equation*}
$$

Equations (1) and (2) may be written in the form

Proof

$$
\begin{equation*}
x \frac{d}{d x}\left[x \frac{d}{d x} J_{n}(\lambda x)\right]+\left(\lambda^{2} x^{2}-n^{2}\right) J_{n}(\lambda x)=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x \frac{d}{d x}\left[x \frac{d}{d x} J_{n}(\mu x)\right]+\left(\mu^{2} x^{2}-n^{2}\right) J_{n}(\mu x)=0 \tag{4}
\end{equation*}
$$

Multiplying (3) by $\frac{J_{n}(\mu x)}{x}$ and (4) by $\frac{J_{n}(\lambda x)}{x}$ we get

Proof

$$
\begin{equation*}
J_{n}(\mu x) \frac{d}{d x}\left[x \frac{d}{d x} J_{n}(\lambda x)\right]+\frac{1}{x}\left(\lambda^{2} x^{2}-n^{2}\right) J_{n}(\lambda x) J_{n}(\mu x)=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{n}(\lambda x) \frac{d}{d x}\left[x \frac{d}{d x} J_{n}(\mu x)\right]+\frac{1}{x}\left(\mu^{2} x^{2}-n^{2}\right) J_{n}(\mu x) J_{n}(\lambda x)=0 \tag{6}
\end{equation*}
$$

Then subtracting, (5) - (6) we get

Proof

$$
\begin{align*}
& J_{n}(\mu x) \frac{d}{d x}\left[x \frac{d}{d x} J_{n}(\lambda x)\right]- \\
& J_{n}(\lambda x) \frac{d}{d x}\left[x \frac{d}{d x} J_{n}(\mu x)\right]+ \\
& \left(\lambda^{2}-\mu^{2}\right) x J_{n}(\lambda x) J_{n}(\mu x)=0 \tag{7}
\end{align*}
$$

With some more manipulation, equation (7) may be written as

Proof

$$
\begin{align*}
& \frac{d}{d x}\left[J_{n}(\mu x) x \frac{d}{d x} J_{n}(\lambda x)\right]- \\
& \frac{d}{d x}\left[J_{n}(\lambda x) x \frac{d}{d x} J_{n}(\mu x)\right]+ \\
& \left(\lambda^{2}-\mu^{2}\right) x J_{n}(\lambda x) J_{n}(\mu x)=0 \tag{8}
\end{align*}
$$

Finally integrating (8) from 0 to 1 noting that $J_{n}(\lambda)=J_{n}(\mu)=0$, we get

Proof

$$
\left(\lambda^{2}-\mu^{2}\right) \int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x=0
$$

And since $\lambda \neq \mu$, then we may divide to get the desired result

$$
\begin{equation*}
\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x=0 \tag{9}
\end{equation*}
$$

Coefficients

Theorem
If λ and μ are distinct positive roots of $J_{n}(x)=0$ then

$$
\begin{aligned}
& \quad \int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x= \begin{cases}0, & \text { if } \lambda \neq \mu \\
\frac{1}{2} J_{n+1}^{2}(\lambda), & \text { if } \lambda=\mu\end{cases} \\
& -\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\lambda x) d x=\frac{1}{2} J_{n+1}^{2}(\lambda) \neq 0
\end{aligned}
$$

Coefficients

Theorem

If λ and μ are distinct positive roots of $J_{n}(x)=0$ then

$$
\begin{aligned}
& \quad \int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x= \begin{cases}0, & \text { if } \lambda \neq \mu \\
\frac{1}{2} J_{n+1}^{2}(\lambda), & \text { if } \lambda=\mu\end{cases} \\
& -\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\lambda x) d x=\frac{1}{2} J_{n+1}^{2}(\lambda) \neq 0 \\
& -\int_{0}^{1} r J_{0}\left(j_{n} r\right) J_{0}\left(j_{n} r\right) d r=\frac{1}{2} J_{1}^{2}\left(j_{n}\right) \neq 0
\end{aligned}
$$

Coefficients

Theorem
If λ and μ are distinct positive roots of $J_{n}(x)=0$ then

$$
\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\mu x) d x= \begin{cases}0, & \text { if } \lambda \neq \mu \\ \frac{1}{2} J_{n+1}^{2}(\lambda), & \text { if } \lambda=\mu\end{cases}
$$

- $\int_{0}^{1} x J_{n}(\lambda x) J_{n}(\lambda x) d x=\frac{1}{2} J_{n+1}^{2}(\lambda) \neq 0$
- $\int_{0}^{1} r J_{0}\left(j_{n} r\right) J_{0}\left(j_{n} r\right) d r=\frac{1}{2} J_{1}^{2}\left(j_{n}\right) \neq 0$
- $A_{n}=\frac{\int_{0}^{1} r_{0}\left(j_{n} r\right) f(r) d r}{\int_{0}^{1} r J_{0}\left(j_{n} r\right) J_{0}\left(j_{n} r\right) d r}$

Thank You!

