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Terminology

General Form

Bessel’s differential equation is

x2y ′′ + xy ′ + (x2 − n2)y = 0
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Bessel’s differential equation is
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The linearly independent solutions are Jn and Yn.
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Bessel Functions
Terminology

General Form

Bessel’s differential equation is

x2y ′′ + xy ′ + (x2 − n2)y = 0

The linearly independent solutions are Jn and Yn.
The zeros are jn and yn.
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Bessel Functions of Order Zero

/Bessel/j0.pdf

Figure: Bessel Function of the First Kind, J0
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Bessel Functions of Order Zero
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Figure: Bessel Function of the Second Kind, Y0
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▶ Separation of variables
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▶ Separation of variables
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Bessel Functions
Terminology

Key Terms

▶ Separation of variables
▶ Regular singular
▶ Superposition
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Physical Description

▶ Radially symmetric
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▶ Radially symmetric
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Drum Example

Physical Description

▶ Radially symmetric
▶ Radius r = 1
▶ Beginning at rest
▶ Edges fixed
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Drum Example

Boundary Valued Problem

This physical problem can be represented by the following
boundary valued problem:
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Boundary Valued Problem

This physical problem can be represented by the following
boundary valued problem:

▶ utt = urr +
1
r ur
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Boundary Valued Problem

This physical problem can be represented by the following
boundary valued problem:

▶ utt = urr +
1
r ur

▶ u(r ,0) = f (r)
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Drum Example

Boundary Valued Problem

This physical problem can be represented by the following
boundary valued problem:

▶ utt = urr +
1
r ur

▶ u(r ,0) = f (r)
▶ ut(r ,0) = 0
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Drum Example

Boundary Valued Problem

This physical problem can be represented by the following
boundary valued problem:

▶ utt = urr +
1
r ur

▶ u(r ,0) = f (r)
▶ ut(r ,0) = 0
▶ u(1, t) = 0
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Drum Example

Separation of Variables

We have
u(r , t) = R(r)T (t)

▶ T ′′ + �T = 0
▶ R′′ + 1

r R′ + �R = 0
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Drum Example

Separation of Variables

We have
u(r , t) = R(r)T (t)

▶ T ′′ + �T = 0
▶ R′′ + 1

r R′ + �R = 0
▶ � = �2 > 0
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Solutions

The solutions of the given ODE’s are
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Drum Example

Solutions

The solutions of the given ODE’s are

▶ T (t) = c1 cos(�t) + c2 sin(�t)
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Drum Example

Solutions

The solutions of the given ODE’s are

▶ T (t) = c1 cos(�t) + c2 sin(�t)
▶ R(r) = c3J0(�r) + c4Y0(�r)
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Drum Example

Evaluation

Using initial and boundary conditions, we have

un(r , t) = AnJ0(jnr) cos(jnt)
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Drum Example

Evaluation

Using initial and boundary conditions, we have

un(r , t) = AnJ0(jnr) cos(jnt)

General solution
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Drum Example

Evaluation

Using initial and boundary conditions, we have

un(r , t) = AnJ0(jnr) cos(jnt)

General solution

u(r , t) =
∞∑

n=1

AnJ0(jnr) cos(jnt)
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Amplitude

The amplitude of displacement, from u(r ,0) = f (r) is:
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Drum Example

Amplitude

The amplitude of displacement, from u(r ,0) = f (r) is:

An =

∫ 1
0 rJ0(jnr)f (r)dr∫ 1

0 rJ0(jnr)J0(jnr)dr
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Frequencies

Fundamental pitch j1
2�

First overtone j2
2�

Second overtone j3
2�
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Orthogonality Property of Bessel Functions

/Bessel/jnspdf.pdf

Figure: Bessel Functions of the First Kind
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Orthogonality

Problems in Mathematical Physics

▶ PDE’s model physical phenomena.
▶ Example: Steady Temperatures in Circular Cylinder

(Laplacian in Cylindrical Coordinates).
▶ Example: The Vibrating Drumhead (Wave Equation in

Polar Coordinates).
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Methods of Solution

▶ PDE’s are difficult to solve.
▶ Fourier’s Method: Linear and homogeneous PDE’s with

homogeneous boundary conditions.
▶ Also known as Separation of Variables.
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Orthogonality

Fourier’s Method: PDE −→ ODE’s

▶ PDE: Wave Equation in Polar Coordinates
▶ Apply Fourier’s Method
▶ Two second order ODE’s

▶ Simple Harmonic Motion T ′′ + �T = 0
▶ Bessel’s Equation R′′ + 1

r R′ + R = 0
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Orthogonal Functions

▶ Analysis of solutions to ODE’s
▶ Underlying Theme: Orthogonal Functions
▶ Examples:

▶ Sine and Cosine Functions
▶ Legendre Polynomials (Special Function)
▶ Bessel Functions (A "Very" Special Function)
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What is Orthogonality?

▶ Dot Product or Inner Product in ℝn
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Orthogonality

What is Orthogonality?

▶ Dot Product or Inner Product in ℝn

▶ Given x, y ∈ ℝn

▶ Define x ⋅ y =
∑n

i=1 xiyi
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Orthogonality

What is Orthogonality?

▶ Dot Product or Inner Product in ℝn

▶ Given x, y ∈ ℝn

▶ Define x ⋅ y =
∑n

i=1 xiyi

▶ x and y are orthogonal when
∑n

i=1 xiyi = 0
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Generalize Orthogonality

▶ Inner Product in ℛ[a,b]
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Generalize Orthogonality

▶ Inner Product in ℛ[a,b]
▶ Given f ,g ∈ ℛ[a,b]
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Orthogonality

Generalize Orthogonality

▶ Inner Product in ℛ[a,b]
▶ Given f ,g ∈ ℛ[a,b]
▶ Define ⟨f ,g⟩ =

∫ b
a f (x)g(x)dx
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Orthogonality

Generalize Orthogonality

▶ Inner Product in ℛ[a,b]
▶ Given f ,g ∈ ℛ[a,b]
▶ Define ⟨f ,g⟩ =

∫ b
a f (x)g(x)dx

▶ f and g are orthogonal when
∫ b

a f (x)g(x)dx = 0
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Orthogonality

Example: Simple Harmonic Motion

▶ Consider T ′′ + n2T = 0, (� = n2)
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Orthogonality

Example: Simple Harmonic Motion

▶ Consider T ′′ + n2T = 0, (� = n2)

▶ Solutions are sin(nx) and cos(nx)
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Orthogonality

Example: Simple Harmonic Motion

▶ Consider T ′′ + n2T = 0, (� = n2)

▶ Solutions are sin(nx) and cos(nx)
▶ Easy to show that

∫ �
−� sin(mx) cos(nx)dx = 0

for any n,m ∈ ℤ
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Example: Legendre Polynomials

▶ It was shown that the Legendre Polynomials satisfy∫ 1
−1 Pn(x)Pm(x)dx = 0 for n,m ∈ ℤ,n ∕= m
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Example: Bessel Functions

▶ Orthogonality property of Jn(�x) and Jn(�x)
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Example: Bessel Functions

▶ Orthogonality property of Jn(�x) and Jn(�x)
▶ Bessel Functions of the First Kind of Order n
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Orthogonality

Example: Bessel Functions

▶ Orthogonality property of Jn(�x) and Jn(�x)
▶ Bessel Functions of the First Kind of Order n
▶ � and � are distinct positive roots of Jn(x) = 0
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Orthogonality

Example: Bessel Functions

▶ Orthogonality property of Jn(�x) and Jn(�x)
▶ Bessel Functions of the First Kind of Order n
▶ � and � are distinct positive roots of Jn(x) = 0
▶ Will show:

∫ 1
0 xJn(�x)Jn(�x)dx = 0
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Orthogonality

Theorem

Theorem
If � and � are distinct positive roots of Jn(x) = 0 then∫ 1

0
xJn(�x)Jn(�x)dx =

{
0, if � ∕= �
1
2J2

n+1(�), if � = �
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Orthogonality

Proof

Proof.
Suppose � ∕= �, then � and � are distinct positive roots of
Jn(x) = 0. Since Jn(�x) and Jn(�x) are solutions of the
Bessel equation in parametric form, we can write

x2J ′′n (�x) + xJ ′n(�x) + (�2x2 − n2)Jn(�x) = 0 (1)

and

x2J ′′n (�x) + xJ ′n(�x) + (�2x2 − n2)Jn(�x) = 0 (2)

Equations (1) and (2) may be written in the form

Karoji, Tsai, Weyrens Bessel Functions
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Proof

x
d
dx

[
x

d
dx

Jn(�x)
]
+ (�2x2 − n2)Jn(�x) = 0 (3)

and

x
d
dx

[
x

d
dx

Jn(�x)
]
+ (�2x2 − n2)Jn(�x) = 0 (4)

Multiplying (3) by Jn(�x)
x and (4) by Jn(�x)

x we get

Karoji, Tsai, Weyrens Bessel Functions



Introduction
Application
Properties

Orthogonality

Proof

Jn(�x)
d
dx

[
x

d
dx

Jn(�x)
]
+

1
x
(�2x2 − n2)Jn(�x)Jn(�x) = 0 (5)

and

Jn(�x)
d
dx

[
x

d
dx

Jn(�x)
]
+

1
x
(�2x2 − n2)Jn(�x)Jn(�x) = 0 (6)

Then subtracting, (5) - (6) we get
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Orthogonality

Proof

Jn(�x)
d
dx

[
x

d
dx

Jn(�x)
]
−

Jn(�x)
d
dx

[
x

d
dx

Jn(�x)
]
+

(�2 − �2)xJn(�x)Jn(�x) = 0 (7)

With some more manipulation, equation (7) may be written as
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Orthogonality

Proof

d
dx

[
Jn(�x)x

d
dx

Jn(�x)
]
−

d
dx

[
Jn(�x)x

d
dx

Jn(�x)
]
+

(�2 − �2)xJn(�x)Jn(�x) = 0 (8)

Finally integrating (8) from 0 to 1 noting that Jn(�) = Jn(�) = 0,
we get
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Proof

(�2 − �2)

∫ 1

0
xJn(�x)Jn(�x)dx = 0

And since � ∕= �, then we may divide to get the desired result∫ 1

0
xJn(�x)Jn(�x)dx = 0 (9)
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Coefficients

Theorem
If � and � are distinct positive roots of Jn(x) = 0 then∫ 1

0
xJn(�x)Jn(�x)dx =

{
0, if � ∕= �
1
2J2

n+1(�), if � = �

▶
∫ 1

0 xJn(�x)Jn(�x)dx = 1
2J2

n+1(�) ∕= 0
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Orthogonality

Coefficients

Theorem
If � and � are distinct positive roots of Jn(x) = 0 then∫ 1

0
xJn(�x)Jn(�x)dx =

{
0, if � ∕= �
1
2J2

n+1(�), if � = �

▶
∫ 1

0 xJn(�x)Jn(�x)dx = 1
2J2

n+1(�) ∕= 0

▶
∫ 1

0 rJ0(jnr)J0(jnr)dr = 1
2J2

1 (jn) ∕= 0
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Orthogonality

Coefficients

Theorem
If � and � are distinct positive roots of Jn(x) = 0 then∫ 1

0
xJn(�x)Jn(�x)dx =

{
0, if � ∕= �
1
2J2

n+1(�), if � = �

▶
∫ 1

0 xJn(�x)Jn(�x)dx = 1
2J2

n+1(�) ∕= 0

▶
∫ 1

0 rJ0(jnr)J0(jnr)dr = 1
2J2

1 (jn) ∕= 0

▶ An =
∫ 1

0 rJ0(jnr)f (r) dr∫ 1
0 rJ0(jnr)J0(jnr) dr
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Thank You!
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