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Abstract. We briefly address how to solve Bessel’s differential
equation and describe its solutions, Bessel functions. Additionally,
we discuss two real-life scenarios to motivate and demonstrate the
importance of Bessel functions. Finally, we discuss and prove or-
thogonality for Bessel functions of the first kind.

1. Introduction

The standard form for any second order homogeneous differential
equation is

(1.1) y′′ + P (x)y′ +Q(x)y = 0.

If both P (x) and Q(x) are analytic at x0, meaning there is a power
series,

∑∞
n=0 an(x− x0)n converging to the required function on some

neighborhood of x0, then the point x0 is said to be ordinary, otherwise
it is singular. To solve equation (1.1), we first determine whether x0 is
an ordinary or singular point. When a singular point is regular, that
is, both (x− x0)P (x) and (x− x0)2Q(x) are analytic at x0, we can use
the the method of Frobenius to solve the differential equation.

Bessel functions of order n are solutions to the second order differ-
ential equation

(1.2) x2y′′ + xy′ + (x2 − n2)y = 0,

where n is an arbitrary, constant value. We will limit our focus to values
where n ≥ 0. Equation 1.2 has two linearly independent solutions Jn(x)
and Yn(x) and thus a general solution

y = c1Jn(x) + c2Yn(x).

We denote the Bessel function of the first kind with order n by Jn(x)
and the second kind by Yn(x). Similarly, we notate the zeros of these
functions as jn and yn, respectively. Zeroth order Bessel functions of
the first and second kind can be graphically represented by Figures 1
and 2, respectively.
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Figure 1. Bessel Function of the first kind, J0
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Figure 2. Bessel Function of the second kind, Y0

For differential equations of the form 1.2, x0 is regular singular. Solv-
ing the indicial equation

r(r − 1) + a0r + b0r = 0

for r gives the values we use in the Frobenius method. In this equation,
a0 and b0 are the analytic values of P (x) and Q(x), in equation 1.1,
respectively. The solutions to the indicial equation of 1.2 are n and −n
for all n ≥ 0. The general form for Jn(x) is given by

Jn(x) =
∞∑
m=0

(−1)m(x
2
)n+2m

Γ(m+ 1)Γ(n+m+ 1)
,

where the Gamma function is defined by

Γ(p) =

∫ ∞
0

e−xxp−1dx
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for p 6= 0,−1,−2, . . . and has the following properties:

(1) Γ(1) = 1
(2) Γ(p+ 1) = pΓ(p)
(3) Γ(p+ 1) = p! for positive integral p.

As a result of the properties of the gamma function, Jn(x) has certain
properties under specific conditions as seen in the following chart.

Jn(x) Condition
Even function p even
Odd function p odd

Complex values x < 0 or x /∈ Z
Since Jn(x) has complex values for x < 0 and non-integer values of p,
we consider only values of x > 0 when p is not an integer.

2. Application

2.1. Heat Diffusion. One common application that results in a Bessel
function solution is steady-state temperature in a cylinder. This par-
ticular example is a cylinder with a radius of r = 3 and a height of
z = 5. The temperature is then expressed as an equation of three vari-
ables: r, θ, and z. The lateral surface and bottom face of this radially
symmetric cylinder are held at temperature zero. The top face is held
at an arbitrary temperature g(r). Since the cylinder is radially sym-
metric, the temperature will never depend on θ, and all functions of θ
can thus be omitted from the equation. The conditions of the afore-
mentioned scenario can be mathematically modeled by the following
boundary valued problem where 0 ≤ r < 3 and 0 < z < 5:

urr + 1
r
ur + uzz = 0

u(3, z) = 0

u(r, 0) = 0

u(r, 5) = g(r)

Lemma 2.1 (Separation of Variables). Suppose

(2.1) u(r, z) = R(r)Z(z) 6= 0;

then the preceeding boundary valued problem results in the following two
ordinary differential equations{

Z ′′ − λZ = 0

rR′′ +R′ + λrR = 0.
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Proof. Let u(r, z) = R(r)Z(z) 6= 0, and observe

urr +
1

r
ur + uzz = R′′Z +

1

r
R′Z +RZ ′′ = 0.

Dividing through by u(r, z) we obtain

R′′

R
+

1
r
R′

R
+
Z ′′

Z
= 0.

Since R(r) and Z(z) are independent from each other, they must both
be some arbitrary constant, so we can equate them by

R′′

R
+

1
r
R′

R
= −Z

′′

Z
= −λ.

This is then decomposed into two separate second order ordinary dif-
ferential equations

R′′ +
1

r
R′ + λR = 0

and

Z ′′ − λZ = 0.

�

The general solution for Z is

(2.2) Z = c1 cosh(αz) + c2 sinh(αz)

when we set λ = α2 > 0. To find c1 = 0, we substitute the boundary
value u(r, 0) = 0 into equation 2.2. Likewise, the general solution for
R is

R = c3J0(αr) + c4Y0(αr).

In order to keep R bounded, we require c4 = 0 because Y0 approaches
negative infinity as x approaches zero. The solution αn = jn

3
is found

using the boundary condition u(3, z) = 0. Plugging the solution back
into equation 2.1 and applying the method of linearity, we have the
general solution

(2.3) u(r, z) =
∞∑
n=1

AnJ0(
jnr

3
) sinh(

jnz

3
).

We find An to be

An =

∫ 3

0
rg(r)J0(

jnr
3

)dr

sinh(5jn
3

)
∫ 3

0
rJ0(

jnr
3

)J0(
jnr
3

)dr
,
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for n = 1, 2, 3..., using knowledge of orthogonality and substituting the
boundary condition u(r, 5) = g(r) into equation 2.3. This is further
simplified to

An =

∫ 3

0
rg(r)J0(

jnr
3

)dr

sinh(5jn
3

)(9
2
)(J1(jn))2

for n = 1, 2, 3...

2.2. Wave Propagation. The next physical application we discuss is
a radially symmetrical circular drumhead of radius r = 1 with fixed
edges that is displaced directly in the center with an arbitrary force.
The velocity of the drumhead at time t = 0 is zero. The initial posi-
tion of the center’s displacement is represented by f(r). We have the
boundary valued problem where 0 ≤ r < 1, t > 0:

utt = urr + 1
r
ur

u(r, 0) = f(r)

ut(r, 0) = 0

u(1, t) = 0

Using separation of variables where

(2.4) u(r, t) = R(r)T (t)

the following results: {
T ′′ + µT = 0

R′′ + 1
r
R′ + µR = 0.

We disregard dampening forces and assume the drumhead will vi-
brate forever. The general solution

(2.5) T (t) = c1 cos(αt) + c2 sin(αt)

results from the eigenvalue µ = α2 > 0.
We substitute the initial condition ut(r, 0) = 0 into this differential

equation as T ′(0) = 0. Since α2 > 0, we know c2 = 0. The general
solution for equation 2.5 becomes

T (t) = c1 cos(αt).

We note that r = 0 is a regular singular point of the ordinary dif-
ferential equation of R(r). A slight change in variables leads to the
following Bessel function

(2.6) R(r) = c3J0(αr) + c4Y0(αr).

We know R(r) must be bounded at 0. Observing the graphs of J0
and Y0 in Figure 1 and Figure 2, we have c4, in equation 2.6, must be
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equal to zero. The boundary condition R(1) = 0 yields αn = jn. Using
this information we can substitute back into equation 2.4 to obtain

un(r, t) = AnJ0(jnr) cos(jnt).

The general solution u(r, t) is the Fourier-Bessel series

(2.7) u(r, t) =
∞∑
n=1

AnJ0(jnr) cos(jnt).

The initial condition u(r, 0) = f(r) and knowledge of orthogonality
can be used to find the amplitude of the initial displacement of the
drumhead. The amplitude of the displacement, or Fourier coefficient
An, is found by evaluating the orthogonal relationship

An =

∫ 1

0
rJ0(jnr)f(r)dr∫ 1

0
rJ0(jnr)J0(jnr)dr

which depends on the force.
From equation 2.7, the frequency, fundamental pitch of the drum,

and all overtones can be found. The period is found using the parame-
ter of cos(jnt), and is 2π

jn
, so the frequency is jn

2π
. The fundamental pitch

is the frequency j1
2π

. All overtones are found as the frequency evaluated
at each zero jn with n = 2, 3, 4... where j2 defines the first overtone, j3
the second, and so forth. When the ratios between overtones and the
fundamental pitch are integer values, the sound is harmonious. When
the relation is not an integer value, the sound is cacophonous.

3. Orthogonality

We now explore the orthogonality property of Jn(λx) and Jn(ρx),
the Bessel functions of the first kind of order n where λ and ρ are
distinct positive roots of Jn(x) = 0. We do this by proving∫ 1

0

xJn(λx)Jn(ρx) dx = 0.

A few remarks are in order. Recall the dot product or inner product
defined for Rn. Two vectors x, y ∈ Rn are said to be orthogonal if

〈x,y〉 =
n∑
i=1

xiyi = 0.

As a generalization we define the inner product for the space of Rie-
mann integrable functions R[a, b] on a closed and bounded interval by

〈f, g〉 =

∫ b

a

f(x)g(x) dx.



BESSEL FUNCTIONS 7

We say f, g are orthogonal if 〈f, g〉 = 0. Sometimes, as in the case
of Bessel functions, inner products are defined with a weight function
w(x). In this case, we say f, g ∈ R[a, b] are orthogonal if

〈f, g〉 =

∫ b

a

w(x)f(x)g(x) dx = 0.

In the case of Bessel functions, we have w(x) = x. We are now ready
to prove the following theorem.

Theorem 3.1. If λ and ρ are positive roots of Jn(x), then∫ 1

0

xJn(λx)Jn(ρx) dx =

{
0, if λ 6= ρ
1
2
J2
n+1(λ), if λ = ρ

Proof. (i) Suppose λ 6= ρ. Then λ and ρ are distinct positive roots of
Jn(x). Since Jn(λx) and Jn(ρx) are solutions of the Bessel equation in
parametric form, we can write

x2J ′′n(λx) + xJ ′n(λx) + (λ2x2 − n2)Jn(λx) = 0(3.1)

and

x2J ′′n(ρx) + xJ ′n(ρx) + (ρ2x2 − n2)Jn(ρx) = 0.(3.2)

Equations (3.1) and (3.2) may be written in the form

x
d

dx

[
x
d

dx
Jn(λx)

]
+ (λ2x2 − n2)Jn(λx) = 0(3.3)

and

x
d

dx

[
x
d

dx
Jn(ρx)

]
+ (ρ2x2 − n2)Jn(ρx) = 0.(3.4)

Multiplying equation (3.3) by Jn(ρx)
x

and equation (3.4) by Jn(λx)
x

, we
obtain

Jn(ρx)
d

dx

[
x
d

dx
Jn(λx)

]
+

1

x
(λ2x2 − n2)Jn(λx)Jn(ρx) = 0(3.5)

and

Jn(λx)
d

dx

[
x
d

dx
Jn(ρx)

]
+

1

x
(ρ2x2 − n2)Jn(ρx)Jn(λx) = 0.(3.6)
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Then subtracting (3.6) from (3.5), we obtain

Jn(ρx)
d

dx

[
x
d

dx
Jn(λx)

]
− Jn(λx)

d

dx

[
x
d

dx
Jn(ρx)

]
+

(λ2 − ρ2)xJn(λx)Jn(ρx) = 0.(3.7)

We rewrite (3.7) as

d

dx

[
Jn(ρx)x

d

dx
Jn(λx)

]
−
[
d

dx
Jn(ρx)

]
x
d

dx
Jn(λx)

− d

dx

[
Jn(λx)x

d

dx
Jn(ρx)

]
+

[
d

dx
Jn(λx)

]
x
d

dx
Jn(ρx)

+(λ2 − ρ2)xJn(λx)Jn(ρx) = 0(3.8)

and simplify to obtain

d

dx

[
Jn(ρx)x

d

dx
Jn(λx)

]
− d

dx

[
Jn(λx)x

d

dx
Jn(ρx)

]
+

(λ2 − ρ2)xJn(λx)Jn(ρx) = 0.(3.9)

Now integrating equation (3.9) with respect to x from 0 to 1, noting
that Jn(λ) = Jn(ρ) = 0, we get

(λ2 − ρ2)
∫ 1

0

xJn(λx)Jn(ρx) dx = 0.(3.10)

Since λ 6= ρ, we have ∫ 1

0

xJn(λx)Jn(ρx) dx = 0(3.11)

as desired completing the first part of the proof.

(ii) To prove the second part, let u = Jn(λx), then

x2u′′ + xu′ + (λ2x2 − n2)u = 0.

Multiplying by 2u′, we get

2x2u′′u′ + xu′2 + (λ2x2 − n2)uu′ = 0.

We can rewrite this equation as

d

dx

[
x2u′2 − n2u2 + λ2x2u2

]
− 2λ2xu2 = 0.
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Integrating with respect to x from 0 to 1, we get

[
x2u′2 − n2u2 + λ2x2u2

]1
0
− 2λ2

∫ 1

0

xu2 dx = 0

or[
x2
(
d

dx
Jn(λx)

)2

− n2J2
n(λx) + λ2x2J2

n(λx)

]1
0

− 2λ2
∫ 1

0

xJ2
n(λx) dx = 0.

But Jn(λ) = 0 and nJn(0) = 0, so[(
d

dx
Jn(λx)

)2
]∣∣∣∣∣
x=1

− 2λ2
∫ 1

0

xJ2
n(λx) dx = 0.

Hence ∫ 1

0

xJ2
n(λx) dx =

1

2λ2

[(
d

dx
Jn(λx)

)2
]∣∣∣∣∣
x=1

,(3.12)

and from the recurrence relations of Bessel Functions, we have

d

d(λx)
Jn(λx) =

n

λx
Jn(λx)− Jn+1(λx)

or

d

dx
Jn(λx) =

n

x
Jn(λx)− λJn+1(λx).

Then equation (3.12) becomes∫ 1

0

xJ2
n(λx) dx =

1

2λ2

[(n
x
Jn(λx)− λJn+1(λx)

)2]∣∣∣∣
x=1

=
1

2
J2
n+1(λ)

as desired, completing the second part of the proof. �

Remark 3.2. The proof of the second part of Theorem 3.1 justifies
division by

∫ 1

0
rJ0(jnr)J0(jnr) dr in the computation of the Fourier Co-

efficient

An =

∫ 1

0
rJ0(jnr)f(r) dr∫ 1

0
rJ0(jnr)J0(jnr) dr

for the wave equation in polar coordinates.
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