A PREDATOR-PREY MATHBIOLOGY MODEL

SHANE BROUSSARD, BERNARD RILEY, AND ARGEN WEST

Abstract. The goal of this project is to come up with a dynamical system that represents an eco-system of three populations. Then apply theorems and methods learned in class to determine under which conditions this population can co-exist.

After much trial and error, we came up with this model. Which is a two predator and one prey model.

\[
\frac{dx}{dt} = x(\beta z - x)
\]

\[
\frac{dy}{dt} = y(\gamma z - \alpha)
\]

\[
\frac{dz}{dt} = z(\theta - \phi x - \eta y)
\]

\[(\alpha, \beta, \gamma, \theta, \phi, \eta > 0)\]

- \(x\) represents the population of the first predator.
- \(y\) represents the population of the second predator.
- \(z\) represents the population of the prey.
- \(\beta z\) represents the per capita gain to the first predator.
- \(\gamma z\) represents the per capita gain to the second predator.
- \(\alpha\) represents the rate for which the second predator is harvested.
- \(\theta\) represents the birth rate constant of the prey \(z\).
- \(\phi x\) represents the per capita loss of the prey due to the first predator.
- \(\eta y\) represents the per capita loss of the prey due to the second predator.

In \(\frac{dx}{dt}\) we can see that as the population of \(x\) increases its death rate also increases. Thus if \(\beta z < x\), \(\frac{dx}{dt}\) will have a carrying capacity. If in \(\frac{dy}{dt}\), \(\gamma z < \alpha\), then the second predator will die off.
And in the absence of predators dz/dt will grow with out bound. Which brings us to the main focus of this project. Under what conditions can this model be a viable stable eco-system.

First we find the critical points for our system.

1. $(0,0,0)$
2. $(0, \alpha, \frac{\beta}{\gamma})$
3. $\left(\frac{\theta}{\phi}, 0, \frac{\theta}{\phi}\right)$
4. $\left(\frac{\theta}{\gamma}, \frac{\theta - \phi \beta}{\eta}, \alpha\right)$

Then we can use a Jacobian Matrix to linearize our system.

$$
J =
\begin{pmatrix}
 f_x(x, y, z) & f_y(x, y, z) & f_z(x, y, z) \\
 g_x(x, y, z) & g_y(x, y, z) & g_z(x, y, z) \\
 h_x(x, y, z) & h_y(x, y, z) & h_z(x, y, z)
\end{pmatrix}
$$

Now by plugging in our critical points into the Jacobian matrix, we can take its eigenvalues to prove stability.

Lemma 0.1. The critical point is stable if the eigenvalues of its matrix have all negative parts or negative real parts. If one of its eigenvalues is positive the point is unstable.

First we will look at the origin, $(0,0,0)$. Plugging in our values for x, y, and z, we can attain our H_2 matrix.

$$
J(0,0,0) =
\begin{pmatrix}
 0 & 0 & 0 \\
 0 & -\alpha & 0 \\
 0 & 0 & 0
\end{pmatrix}
$$

To find the roots of the system, it is easiest to take the determinant of a $\lambda \cdot I - H_2$, which yields:

$$
\lambda \cdot I - J(0,0,0) =
\begin{pmatrix}
 \lambda & 0 & 0 \\
 0 & \lambda + \alpha & 0 \\
 0 & 0 & \lambda - \theta
\end{pmatrix}
$$

This gives us our roots to this H_2 matrix fairly readily as the determinant yields the equation.
\[\lambda (\lambda + \alpha)(\lambda - \theta) = 0 \]

Thus \(\lambda_1 = 0, \lambda_2 = -\alpha, \) and \(\lambda_3 = \theta. \) Since \(\lambda_1 \neq 0 \) and \(\lambda_3 \neq 0, \) and all roots must be negative for the Lemma’s criterion to be met, this point can be immediately said to be unstable.

Next we will analyze the critical point \((0, \frac{\alpha}{\gamma}, \frac{\theta}{\eta}).\) Plugging in our values for \(x, y,\) and \(z\), we can attain our \(H_2\) matrix.

\[
J(0, \frac{\alpha}{\gamma}, \frac{\theta}{\eta}) = \begin{pmatrix}
\beta \theta \\
0 \\
0 \\
-\phi \theta \\
0 \\
-\theta \\
\theta \\
\theta + \frac{\eta \alpha}{\gamma}
\end{pmatrix}
\]

To find the roots of the system, it is easiest to take the determinant of a \(\lambda \ast I - H_2\), which yields:

\[
\lambda \ast I - J(0, \frac{\alpha}{\gamma}, \frac{\theta}{\eta}) = \begin{pmatrix}
\lambda - \frac{\beta \theta}{\eta} & 0 & 0 \\
0 & \lambda - \frac{\gamma \theta}{\eta} & -\alpha \\
\phi \theta & \theta & \lambda - \theta + \frac{\eta \alpha}{\gamma}
\end{pmatrix}
\]

Which yeilds a \(P(\lambda)\) that looks like this:

\[
(\lambda - \frac{\beta \theta}{\eta})(\lambda - \frac{\gamma \theta}{\eta})(\lambda - \theta + \frac{\eta \alpha}{\gamma}) + \alpha \theta) = 0
\]

and reduces farther to:

\[
(\lambda - \frac{\beta \theta}{\eta})(\lambda^2 + \lambda(\frac{\eta}{\gamma} - \theta - \frac{\gamma \theta}{\eta}) + (\frac{\gamma \theta^2}{\eta}) = 0
\]

Thus \(\lambda_1 = \frac{\beta \theta}{\eta}, \lambda_{2,3} = \frac{\theta + \frac{\gamma \theta}{\eta} - \frac{\eta \alpha}{\gamma} \pm \sqrt{(\frac{\theta + \gamma \theta}{\eta} - \frac{\eta \alpha}{\gamma})^2 - 4 \frac{\lambda \theta^2}{\eta}}}{2}. \) Since \(\lambda_1 \neq 0, \) and all roots must be negative for the Lemma’s criterion to be met, this point can be immediately said to be unstable.

Next we will analyze the critical point \((\frac{\theta}{\phi}, 0, \frac{\theta}{\phi}).\) Plugging in our values for \(x, y,\) and \(z,\) we can attain our \(H_2\) matrix.
\[J\left(\frac{\theta}{\phi}, 0, \frac{\theta}{\beta\phi} \right) = \begin{pmatrix} -\frac{\theta}{\phi} & 0 & \frac{\theta\beta}{\phi} \\ 0 & \frac{\gamma\theta}{\beta\phi} - \alpha & 0 \\ -\frac{\phi}{\beta} & -\frac{\eta\theta}{\beta\phi} & 0 \end{pmatrix} \]

To find the roots of the system, it is easiest to take the determinant of a \(\lambda \ast I - H_2 \), which yields:

\[\lambda \ast I - J\left(\frac{\theta}{\phi}, 0, \frac{\theta}{\beta\phi} \right) = \begin{pmatrix} \lambda + \frac{\theta}{\phi} & 0 & -\frac{\theta\beta}{\phi} \\ 0 & \lambda - \frac{\gamma\theta}{\beta\phi} + \alpha & 0 \\ \frac{\phi}{\beta} & \frac{\eta\theta}{\beta\phi} & \lambda \end{pmatrix} \]

Which yeilds a \(P(\lambda) \) that looks like this:

\[\lambda(\lambda + \frac{\theta}{\phi})(\lambda + \alpha - \frac{\gamma\theta}{\beta\phi}) - \frac{\theta\beta}{\phi} * \frac{\theta}{\beta\phi}(\lambda + \alpha - \frac{\gamma\theta}{\beta\gamma}) = 0 \]

Thus \(\lambda_1 = -\frac{-\phi\beta - \phi\alpha + \gamma\theta}{\phi\beta} \), \(\lambda_2 = \frac{1}{2} \frac{2\phi + \theta + \sqrt{\theta^2 - 4\phi^2}}{\phi} \), and \(\lambda_3 = -\frac{-2\phi - \theta + \sqrt{\theta^2 - 4\phi^2}}{\phi} \)

Since \(\lambda_2 \neq 0 \), and all roots must be negative for the Lemma’s criterion to be met, this point can be immediately said to be unstable.

Now for our last critical point. We will use Routh-Hirwitz Theorem.

Theorem 0.2. *Given the Polynomial,*

\[P(\lambda) = \lambda^n + a_1 \ast \lambda^{n-1} + \ldots + a_{n-1} \ast \lambda + a_n \]

where the coefficients \(a_i \) are real constants, \(i = 1, \ldots, n \), define the \(n \) Huwitz matrices using the coefficients of \(a_i \) of the characteristic polynomial

\[H_1 = (a_1), H_2 = \begin{pmatrix} a_1 & 1 \\ a_3 & a_2 \end{pmatrix}, H_3 = \begin{pmatrix} a_1 & 1 & 0 \\ a_3 & a_2 & a_1 \\ a_5 & a_4 & a_3 \end{pmatrix} \]

and
\[H_n = \begin{pmatrix} a_1 & 1 & 0 & 0 & \cdots & 0 \\ a_3 & a_2 & a_1 & 1 & \cdots & 0 \\ a_5 & a_4 & a_3 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_n \end{pmatrix} \]

where \(a_j = 0 \) if \(j > n \). All the roots of the polynomial \(P(\lambda) \) are negative or have negative real parts if the determinants of all Hurwitz matrices are positive:

\[\det H_j > 0, \ j = 1, 2, \ldots, n. \]

When \(n = 2 \), the Routh-Hurwitz criteria simplify to \(\det H_1 = a_1 > 0 \) and

\[\det H_2 = \det \begin{pmatrix} a_1 & 1 \\ 0 & a_2 \end{pmatrix} = a_1 a_2 > 0 \]

or \(a_1 > 0 \) and \(a_2 > 0 \). For polynomials of degree \(n = 2, 3, 4 \) and \(5 \), the Routh-Hurwitz criteria are as follows:

\[n = 2; \ a_1 > 0, a_2 > 0 \]
\[n = 3; \ a_1 > 0, a_3 > 0, a_1 a_2 > 0 \]

Now we will analyze the critical point \(\left(\frac{\beta \alpha}{\gamma}, \frac{\theta - \phi \beta z}{\eta}, \frac{\alpha}{\gamma} \right) \). Plugging in our values for \(x, y, \) and \(z \), we can attain our \(H_2 \) matrix. In this example we will keep our matrix in terms of \(x, y, \) and \(z \) instead of simplifying them at first.

\[J\left(\frac{\beta \alpha}{\gamma}, \frac{\theta - \phi \beta z}{\eta}, \frac{\alpha}{\gamma} \right) = \begin{pmatrix} -\beta z & 0 & \beta x \\ 0 & 0 & \gamma y \\ -\phi z & -\eta z & 0 \end{pmatrix} \]

To find the roots of the system, it is easiest to take the determinant of a \(\lambda \ast I - H_2 \), which yields:

\[\lambda \ast I - J\left(\frac{\beta \alpha}{\gamma}, \frac{\theta - \phi \beta z}{\eta}, \frac{\alpha}{\gamma} \right) = \begin{pmatrix} \lambda + \beta z & 0 & -\beta x \\ 0 & \lambda & -\gamma y \\ \phi z & \eta z & \lambda \end{pmatrix} \]
Which yields a $P(\lambda)$ that looks like this:

$$(\lambda + \beta z)(\lambda^2 + (\gamma \eta yz)) + (\lambda \beta \phi xz) = 0$$

Which can be simplified further to the form:

$$\lambda^3 + \lambda^2(\beta z) + \lambda(\gamma \eta yz + \beta \phi xz) + \beta \eta \gamma yz^2$$

Using Theorem 0.2, we can now look to show that $a_1 > 0$, $a_3 > 0$, and that $a_1 a_2 > a_3$.

It is clear that a_1 and a_3 are both non-negative regardless of the values of β, η, or γ, so all that is required is proving that $a_1 a_2 > a_3$.

$$a_1 a_2 = \beta \gamma \eta yz^2 + \beta^2 \phi xz^2 > \eta \gamma \beta yz^2$$

A little bit of algebra will show that:

$$\beta^2 \phi xz^2 > 0$$

Plugging in the values at our critical point gives us:

$$\frac{\beta^3 \alpha^3 \phi}{\gamma^3} > 0$$

Note: The above equation excludes x, y, and z since we put the model in terms of the critical point value.

Any time in which the above criterion is met, the model is stable and each of the distinct populations will remain viable.

Now By using Liapunov’s Theorem we can prove global stability.

Liapunov’s Theorem

Let $(0,0)$ be an equilibrium of the autonomous system. And let V be a positive definite c^1 function in a neighborhood U of the origin.

(i) $dV(x,y)/dt \leq 0$ for $(x,y) \in U - (0,0)$, then $(0,0)$ is stable.

(ii) $dV(x,y)/dt < 0$ for $(x,y) \in U - (0,0)$, then $(0,0)$ is asymptotically stable.

(iii) $dV(x,y)/dt > 0$ for $(x,y) \in U - (0,0)$, then $(0,0)$ is unstable.
Now by using
\[V = a(x - \bar{x} - \bar{x}ln(x/\bar{x})) + b(y - \bar{y} - \bar{y}ln(y/\bar{y})) + c(z - \bar{z} - \bar{z}ln(z/\bar{z})) \]

We get
\[a(x - 1)(\beta z + x) + b(y - 1)(\gamma z - \alpha) + c(z - 1)(\theta - \phi x - \eta y) \]

By letting \(a\beta = c\phi \) \(b\gamma = c\eta \)
We can do some algebra to cancel out terms to prove that this \(dV(x, y, z)/dt \) satisfies Liapunov’s Theorem. Thus proving \((\frac{\beta a}{\gamma}, \frac{\theta - \phi \beta z}{\eta}, \frac{\alpha}{\gamma}) \) is globally stable.

\textbf{References}

Allen, Linda B., An Introduction to Mathematical Biology, Texas Tech, Lubbock TX, 2007