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Abstract. The goal of this project is to come up with a dyni-
matical system that represents an eco-system of three populations.
Then apply theorems and methods learned in class to detemine
under which contiditons this population can co-exsist.

After much trial and error, We came up with this model. Which is
a two predator and one prey model.

dx/dt = x(βz − x)

dy/dt = y(γz − α)

dz/dt = z(θ − φx− ηy)

(α, β, γ, θ, φ, η > 0)

• x represents the population of the first predator.
• y represents the population of the second predator.
• z represents the population of the prey.
• βz represents the per captia gain to the first predator.
• γz represents the per captia gain to the second predator.
• α represents the rate for which the second predator is harvested.
• θ represents the birth rate constant of the prey z.
• φx represents the per captia loss of the prey due to the first

predator.
• ηy represents the per captia loss of the prey due to the second

predator.

In dx/dt we can see that as the population of x increases its death rate
also increases. Thus if betaz < x, dx/dt will have a carrying capcity.
If In dy/dt, gammaz < alpha , then the second preadator will die off.
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And in the absence of predators dz/dt will grow with out bound. Which
brings us to the main focus of this project. Under what conditions can
this model be a viable stable eco-system.

First we find the critical points for our system.

(1) (0,0,0)
(2) (0, α

γ
, θ
η
)

(3) ( θ
φ
, 0, θ

βφ
)

(4) (βα
γ
,
θ−φβ α

γ

η
, α
γ
)

Then We can use a Jacobian Matrix to linearize our system.

J =

fx(x, y, z) fy(x, y, z) fz(x, y, z)
gx(x, y, z) gy(x, y, z) gz(x, y, z)
hx(x, y, z) hy(x, y, z) hz(x, y, z)


Now by plugging in our Critical points into the Jacobian matrix,

When can take its eignvalues to prove stabily.

Lemma 0.1. The critical point is stable if the eigenvuales of its matrix
have all negative parts or negative real parts. If one of its eigenvalues
is positive the point is unstable.

First we will look at the origin, (0,0,0). Plugging in our values for x,
y, and z, we can attain our H2 matrix.

J(0, 0, 0) =

0 0 0
0 −α 0
0 0 0


To find the roots of the system, it is easiest to take the determinant

of a λ ∗ I −H2, which yields:

λ ∗ I − J(0, 0, 0) =

λ 0 0
0 λ+ α 0
0 0 λ− θ


This gives us our roots to this H2 matrix fairly readily as the deter-

minant yeilds the equation
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λ(λ+ α)(λ− θ) = 0

Thus λ1 = 0, λ2 = −α, and λ3 = θ. Since λ1 6< 0 and λ3 6< 0, and all
roots must be negative for the Lemma’s criterion to be met, this point
can be immediately said to be unstable.

Next we will analyze the critical point (0, α
γ
, θ
η
). Plugging in our

values for x, y, and z, we can attain our H2 matrix.

J(0,
α

γ
,
θ

η
) =


βθ
η

0 0

0 γθ
η

α
−φθ
η
−θ θ − ηα

γ


To find the roots of the system, it is easiest to take the determinant

of a λ ∗ I −H2, which yields:

λ ∗ I − J(0,
α

γ
,
θ

η
) =

λ−
βθ
η

0 0

0 λ− γθ
η

−α
φθ
η

θ λ− θ + ηα
γ


Which yeilds a P (λ) that looks like this:

(λ− βθ

η
)((λ− γθ

η
)(λ− θ +

ηα

γ
) + αθ) = 0

and reduces farther to:

(λ− βθ

η
)(λ2 + λ(

η

γ
− θ − γθ

η
) + (

γθ2

η
) = 0

Thus λ1 = βθ
η

, λ2,3 =
θ+ γθ

η
− ηα

γ
±

√
( ηα

γ
−θ− γθ

η
)2−4 γθ2

η

2
. Since λ1 6< 0, and

all roots must be negative for the Lemma’s criterion to be met, this
point can be immediately said to be unstable.

Next we will analyze the critical point ( θ
φ
, 0, θ

βφ
). Plugging in our

values for x, y, and z, we can attain our H2 matrix.
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J(
θ

φ
, 0,

θ

βφ
) =

−
θ
φ

0 θβ
φ

0 γθ
βφ
− α 0

−φ
β
− ηθ
βφ

0


To find the roots of the system, it is easiest to take the determinant

of a λ ∗ I −H2, which yields:

λ ∗ I − J(
θ

φ
, 0,

θ

βφ
) =

λ+ θ
φ

0 − θβ
φ

0 λ− γθ
βφ

+ α 0
φ
β

ηθ
βφ

λ


Which yeilds a P (λ) that looks like this:

λ(λ+
θ

φ
)(λ+ α− γθ

βφ
)− θβ

φ
∗ θ
β

(λ+ α− γθ

βγ
) = 0

Thus λ1 = −−φβ−φβα+γθ
φβ

, λ2 = 1
2

2φ+θ+
√
θ2−4θ2φ

φ
,and λ3 = −1

2

−2φ−θ+
√
θ2−4θ2φ

φ

Since λ2 6> 0, and all roots must be negative for the Lemma’s crite-
rion to be met, this point can be immediately said to be unstable.

Now for our last crtical point. We will use Routh-Hirwitz Theorem.

Theorem 0.2. Given the Polynomial,

P (λ) = λn + a1 ∗ λn−1 + ...+ an−1 ∗ λ+ an

where the coefficients ai are real constants, i = 1, ..., n, define the n
Huwitz matrices using the coefficients of ai of the characteristic poly-
nomial

H1 =
(
a1

)
, H2 =

(
a1 1
a3 a2

)
, H3 =

a1 1 0
a3 a2 a1

a5 a4 a3


and
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Hn =


a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · an


where aj = 0 if j > n. All the roots of the polynomial P (λ) are

negative or have negative real parts iff the determinants of all Hurwitz
matrices are positive:

detHj > 0, j = 1, 2, ..., n.

When n = 2, the Routh-Hurwitz criteria simplify to detH1 = a1 > 0
and

detH2 = det

(
a1 1
0 a2

)
= a1a2 > 0

or a1 > 0 and a2 > 0. For polynomials of degree n = 2, 3, 4 and 5,
the Routh-Hurwitz criteria are as follows:

n = 2; a1 > 0, a2 > 0

n = 3; a1 > 0, a3 > 0, a1a2 > 0

Now we will analyze the critical point (βα
γ
,
θ−φβ α

γ

η
, α
γ
). Plugging in our

values for x, y, and z, we can attain our H2 matrix. In this example
we will keep our matrix in terms of x, y, and z instead of simplifying
them at first.

J(
βα

γ
,
θ − φβ α

γ

η
,
α

γ
) =

−βz 0 βx
0 0 γy
−φz −ηz 0


To find the roots of the system, it is easiest to take the determinant

of a λ ∗ I −H2, which yields:

λ ∗ I − J(
βα

γ
,
θ − φβ α

γ

η
,
α

γ
) =

λ+ βz 0 −βx
0 λ −γy
φz ηz λ
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Which yeilds a P (λ) that looks like this:

(λ+ βz)(λ2 + (γηyz)) + (λβφxz) = 0

Which can be simplified further to the form:

λ3 + λ2(βz) + λ(γηyz + βφxz) + βηγyz2

Using Theorem 0.2, we can now look to show that a1 > 0, a3 > 0,
and that a1a2 > a3.

It is clear that a1 and a3 are both non-negative regardless of the
values of β, η, or γ, so all that is required is proving that a1a2 > a3.

a1a2 = βγηyz2 + β2φxz2 > ηγβyz2

A little bit of algebra will show that:

β2φxz2 > 0

Plugging in the values at our critical point gives us:

β3α3φ

γ3
> 0

Note: The above equation excludes x, y, and z since we put the
model in terms of the critical point value.

Any time in which the above criterion is met, the model is stable
and each of the distinct populations will remain viable.

Now By using Liapunov’s Theorem we can prove global stability.

Liapunov’sTheorem
Let (0,0) be an equailibrium of the autonomous system. And let V

be a positive definite c1 function in a nieghborhood U of the origin.

(i) dV (x, y)/dt ≤ 0for(x,y)∈ U − (0, 0), then(0, 0)isstable.
(ii)dV(x,y)/dt< 0for(x,y)∈ U−(0, 0), then(0, 0)isasymtoticallystable.
(iii)dV(x,y)/dt> 0for(x,y)∈ U − (0, 0), then(0, 0)isunstable.
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Now by using V = a(x− x̄− x̄ln(x/x̄) + b(y − ȳ − ȳln(y/ȳ) + c(z −
z̄ − z̄ln(z/z̄)

We get a(x− 1)(βz + x) + b(y − 1)(γz − α) + c(z − 1)(θ − φx− ηy)
By letting aβ = cφ bγ = cη
We can do some algerbra to cancel out terms to prove that this dV (x, y, z)/dt

satisfies Liapunov’s Theorem. Thus proving (βα
γ
,
θ−φβ α

γ

η
, α
γ
) is globally

stable.
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