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Figure 1. Xenopus embryos and their stages of development

= |n previous semesters, participants in the capstone course developed a program for
multi-class quantification using a machine learning algorithm based on the StarDist model.

= This semester, our project serves a similar purpose. This ongoing project is being
conducted in collaboration with the Aquatic Germplasm Genetic Research Center
(AGGRC) and the Marine Biological Laboratory (MBL).

Objectives

= Our goal is to develop a multiclass machine learning model using StarDist to accurately
classify different stages of Xenopus frog embryos.

= Qur classifications are based on Nieuwkoop and Faber (NF) stages 2, 3, 4 of Xenopus laevis.
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Figure 3. lllustration of the metrics - F1 score, Precision, Accuracy, and Recall on Epochs 50 to 250

= The graph depicts the variations in f1 score, accuracy, recall, and precision for varying
epochs during the training of U-Net CNN architecture and StarDist.

= The dataset was split into 85 percent training and 15 percent testing and model was
evaluated using an Intersection over Union (loU) threshold equal to 0.4.

= Evaluating the model across different epochs showed an early improvement in metrics,
followed by a gradual decline, highlighting the importance of recognizing training saturation
to increase overall performance.

Distance and Probability Loss on 250 Epochs
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Figure 5. Graphical User Interface (GUI) Tool

= Qur user-friendly graphical user interface (GUI) lets users upload images, receive annotated
results and embryo counts, and export the data.

Multiclass Prediction
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Figure 6. Predictions on Different Classes and Counts

Future work
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Figure 2. VGG Image Annotator (VIA) tool

= We utilized VGG Image Annotator (VIA) to identify and classify each embryo in the dataset.

= O - Unfertilized/abnormal, 1 - two cells, 2 - four cells, 3 - eight cells
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Figure 4. Distance and Probability Loss

= The first graph shows that the Distance Loss for both training and validation losses
started around 30 and decreased to 5 by epochs 50, 100, 150, 200, 250.

= The second graph shows that the Probability Loss for training and validation started at .5
and dropped sharply to around 0.25 by epoch 10.

= The training and validation curves for both losses progressed closely across all epochs,
representing the model’s consistent learning without major overfitting.

= For future work, we would like to create a synthetic data set oversampling the less
prevalent classes in order to address class imbalances.

= Additionally, we aim to apply geometric and color augmentations to create a larger, more
diverse dataset, improving the model's performance.

= We also would like compose an article regarding StarDist and this specific model.
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